‡øŒ,è
7ëÆŠ6ž~&-•Ã^æå0¢ÖÆöÏ1ªm@ê"ÔJ-·XÚ²ì`°È4QÉ6À%K ªc¸1øŽxÐã$ʼnøDÖ|MŽÛo¹EÃ|è4´MhÇÍ…÷Pžln>
g «Ñ~ Ž=¿:¾~Ó«·šJN6w›ïl üb‡¼K>\m-e¥¨Ìð:Û{;ºªüªáç¾Á×Êâ÷švÈž%=½fn©iÜît½]¦©sÑaÕ¶Wø¸R•Ê@Ф7Ý9Â"¯± ø+:cQ£êïö°¤½,¸›…!OhÊXré…BPCžš!x¾ä^ªø [ÉS‚@W×ucB§!-n>|áEâTú9¿8›å5 #b).\{á
VËË’ÃLÑ›&¿Áj‘Ó-&›}5Ä‘Ü{Ï/ЀðÐS¼CŽN¡Ö!“Ô©ÿüÆ×ì
L©é8–N›sÖ™2BËbÒ±çá7Sêèw0k=©:¡h†2ý&FÉÏF½RdVƒ_y¤Ñ!ÚÕ%fø/ÓWš'Lܧ¯¥1oÔ³¸®<ØËЧäFòé9Ù¸?È€ÛÌT«—ö¢q~è!ÄÝ «ü^£44]Ây¦zuç“–¬¼ƒ(5Ê´§ÜR-¼®¾òÊ´sõÊ]xþùüu5«óZØU‡ª‰uE'å¶T%LÐJî¼ï>“"Z@{æZ |Šxš†/›²= +è_&ü„//¶±B¨´Ñ¤äF°Êz]*(_ÔÁy'X§Å]”´V.Í`k
$×°³IòˆÙoQP³‚tùb®ª€CÃÒÒ©Ò-k3SÞ:Ë ±&®6ÀÞøØ2ÔKÉ‚òÉDDí1¦}ìB¹AÜ[jL~kfH*˜êpàwëyãã=º\Û¬aõžwiR+ºÓZ–<*…1õLJ¶,ïÙ:Æ*°YpE![ÌL–ÚÇ]%·jF¶8¸c¡1°Öõš7a&ЧâO;͘!Íž%—
-MÂ"Ppäá‡IǮǟ´æ³’öIš$á*ü)´#š…×^tþXi,¢·äê¥ÂÀǾµÄ,ЍÄýTéqu'L£fËóhþÉdb¡[X©¼Ñnú¡ž4s<«4à¨@wëYáªç¢Ñˆ¥I{üŒ®Ò„,‰È}YæÖH¹ç¥0W!,J/IŠ´ä‹=ûœ]
l)ƒÝ6#s#ŒªUÕô²…T]d°.§ªïÑYÿ]{§+Ã;»^`˜ý0Wš>Ö³ç+¯¨€ã=
0¤Zÿ[µw[ËÄ•œêNì‚1„ƪê,Éó G†áŸÎ•ÚÅ~]pî9×\}µ}#òò´[^AÛHt÷]«š†’6¤$3ß›u½0ÞâB`ú «’«e×PÐIoJmÌ-6aåë_;‰øšXB¥iÏ]fXÛ`Æâ lŠ–JéÐI¶€½
ªV†ª-O䔂†„W\z©S¦´ŽÙ*+„yB]ƒ¡:± =`(íëlcÎ$hm¤7˜—åOo‚ï°—úֽƂÄàéY >ÈÕeJ%ôß"°4ÂÎ4TºQÄÒÐXb-Z“0•gjOVÔ”²9¥ôã¿Ë*$õ¹†x¨b]
’¨Ñý¢h`_ËNSmyz@ÕÇsŒMÜÛ+*»p5•®c´*òש˜¶²lm8~qwkå?®N?1„ô‘_’¡ÚH
g|ÉB¡j?¶þ¥1°ö#”öJ¦Ž¡:£–A'µ@'
ƒRé¦I&å›:ï}ͪkŒí3—êtTrµD{B´å™˜Ž‡D…LÝÓæ1?–<Žrq»Ð½ê…N*žiCMº"
”_;}Z–ûœsT|i›]fL*Óô¼nºñFQç›×à8–Ç-0ÿü’Êþz^šãµÄ¼s]>½
FÂÀ¥æÄqDË6Ù±ÓC¬,kÇëð¶‚½nš\Ef÷U¾‘a£AtY(Ú9UÉ…çŸ'j†DÐ@¾Ð-IЧ°¡sJm…€aؤ^Kg8u-õŠLä‚Å”cŸjHE™¦CJÜ®)fš„é
L#úN¶žxÁaQtT¶~,Ȫ÷ªv$6¬91¹ˆoZÒ>Š*§k%ÐoõRš¦2~1ë0”p0±¥¡$VF
ðb<7ª¢EAÓ²6š^¼/ùí6¸ ð5Ê•ò£1!Ä|ñ
±ÒHðvï~ß/ï%„ü*\~ Ä@D‚ùçR°Óᢀæè¶[oe=X„®#ì~îyæuœN{ú\òvœ%m3”G}}ä>«î“Ôå·%§¶<¸tãn%',Kràt¯ÙûªtœØõ.’«Âq]¹ÍÄÅç)WObâߤýÆ}Ëz9 b²Ílô—Ý}ðOõ%°hLø)Û?®"íª,d_eË ›4CCì:˧.\4Ä\!Xõ×h²I*>ó2±š™¬#ϦïA_'
¤è™rË/»ú‚šš£Â«UUêwBmûzrˆrr(G.m%„‚h:êì“*³î@vr¤Hi¢°{Y3¼å²¾‹Ô×[Ô†úÖNOŠnûûß=:u˜/ÒqÝ›³°t5tÌ6¡"ŽdÙÄu;9j„Öç
gêÌÑ/¾øb÷í3@˧hçS4Ô(…Ú$I8¦:a–"ÙF
|)¹vذ*¾¶J\¥n€v!jÉÿpØk餸:œ—Ý¡¼}í²T¿ nŠÍ´Ùè¤ÛLÛ
Úo|CUD²AfÃÒ:fŒGHø°Á]X@KœAá¢ÃVÆs!½)×0§½w¸)Ô
=aú¾XFÏ׌KÛlUT^Âg‡q¡“‰ùSÜUÆTý=IÛ´}Í-¬ù Õ%Ã\.XXµ
Dœwö·D!%ÛÝH.Ü[LàOPÁ¤4GêúȵöšÃE0€fRHŠ%Îï¾ØšZv)m
J¥#õÛ5‡xSô¶i°XaB‘ï·tPÇIxúÉ'5xñ¹çºn#Rnä*PRH5,뺪þóÑØtž‘'™X¡+—Ôq¬Ãl†cØ4
[[–²Y%7`9(€;>½ ¯í¤ÑA>üÁ²‡á6BpTÎZ5E'ÀÖ§T|Ú';Jó×ùåç*¸_àóv¡"L3‰‹[ž d"¿Á®!9–$l"Ô- DoT¤C6|¶Ä!>Z4´B)dR˜„%ÄT.¥ŠÆ‡%äÎdüKË(6¥ÜE‰:›,}×w*q…ôyþ¹T8½Êâ›Z;2NºØD(•_Èq-Ñ,…b»Å+/É\"‹¿I/¸ttµ¸#ÞL[ÞŽn PrR7Ä]–µ¹iê(ŒØeIóÝ¥’À:k¯m¯ä—í߈8f-ãØåÑ]ÚPnYŸ»ã˜õk†Ç£÷ BÕ–¨a¡¨jmZÎùëø@@
Ê®Ëàfopöúª@ìÒÎzÛêûÈx—Ë2¼ÍªMˆ1É=x..>ÿ|/„Õ.<ÿ<‘%¨—>îàÏ 0VJ¯V$%‡³¿©C-³ôÛ•p‰ýµÕ£$Ù-ªø°ÐOÕ[Tbâ~d¹Ä±…!š
ü‡÷Úm¨û¤|ß{ßÓÔ–„ xâäBÖà–öŒ+›ù‘?)·Ž .¬ªË½äQq~@`Ä,Øh|ŠÎR Œ“òOJu¨Í¨Žm-w"ca+!X`$3K^ ´áÂ×O
y—Š˜ã÷øõùôĉÏPUÌ6æLjçMî^IPQÇ'~éKÙõ¯ÌB]>Kˆòh=ú—.[©K›‹zôv[{0Ê|Žù°J%«¦H®½TÆn¬t0Wή§®4ILî.ƒ›mˆZ<º-5lŸ¢¾R¶†O—Ì®ŠR]>?[¢Z—9“Apr‰u–‹ãýKÇ‹FK@wyÄ`m0èØkJ9B˜ž,8”Ok‰ˆaG?±ŽGòº+Jÿ„¾†çÎîmZò]ìFèH:ú‘[äb;‘i¿2ø¸*½47ÃŒÀºmÏCá“ßÜòã›…f옶ð¥ãÄÇoÓÂù=›_³£p´ÛÒa„çhŽ+òý%¬Äòe£#+ç¡äÍ|»òD2Ú€@˪þÅ=wË)… ¶4jz5ƒõ)ؼ@a)¶ÒsÍ`tãÍ@ÄcÐuÙS-mˆÿÊãÞ6ïÜ<“*„•¨2I9•’U
,µi;ÁEoÝ`+<½¶
ñ% éu¸¼ïþË'
‚Y…ÙÊ wÝq‡º{uÞlX€S”¤
0ʬ<ñÀ…XÖår_Šð|Ö€¨%vÝ5׸ÕÓä*†´‹êx$úQwž¸®eÒe;ïXnY4¢‡æ…¢14„ªb€kZ˜Í(M›-“‰ÙHîtÏ%î@؀©ƒÐl›¦¦ìÛè ®FB‚)-ÀJõ…˜sŸX`-SÑŽ‘®8+Ë?%{Ü®=gP£S÷PÀ±–æH«¢ÊÝhpNÄ£” +<~q|ײª?Z;û²i¿„)D»‡¢ø¡öùȊíQE|“Šß“AðÁûîCg×À´>H/1†Æ®oó—õç€É²ÆUs"W|Àµ×^®ÄU%B_7.X…Þëƒ]ÄÁpÚ€E䵕6ÀBh†²+ø›‹ßþºwA}ä#ýn?×~þægÕâÇ_N¸šè%‹Šx5É䫯¾úüsÿ@‘À?:ËQ‡†® Fq~’í¬ïÒ¸²ðB0%ȳطZnÇMÆÏ°ÂÓTŠD¢›¾ã?ÿ9fávdMÇúòŽil3j€é’”£}¸FQÔ]þÓ]ˆ¶EU•7ÏήÀlųpS-š¡´oZ™öoN€~ú“Ÿ°¯l%&¿G
7fCÕ´Xчöú`f¢â³þÜÇÉNlw2’=Å™ˆú&õPÜ%î䉳î
âÑœpퟘü-(¼o/Kêf/)…™†n-ÊñÓ!ÀÒÈ^å‰R°{@½×X5 Cɉšh4D“ûל¾AU3
‘Ü“âg`iÓ>ûÙÕ
N'1ëûg'+õGv?¸Q¡›°¹…ÅA
Ü¥¨ëT–WñÔï[»˜·KvEÃþe©ò#ñøÕW^ÆÓÔT„ÊÉZ<9;Ä(ñ2ÊÓ³¯0˜gãð^8³!‡@GªŽ…¥ý„†Zb¸DÕ"£½ñI‘ûB[tXtI¥¦A±:ÙH|S¦:•Jç~«ÊµP¶û–7h'Ð;Þ±œk†Ý¤G§˜¦˜¥¼Âì*{LˆCrÈۯƌ9é„pâ.yûëåQFk¡m»l¤S=κ1&J¢Aži°‡ºæ¬µ×]o…JšÀOÐSuo€ÅË
k? ÌS0ŠbÈ2ƒDÄd3¸‹b
îþ¾*®i$¿º÷“'l®ÁµöoÃJFÑUÂÛç—]ŠJ‚lj§èKûßvëiÀl.¨"\ËÒ9K3“ôiªã%ú ^8É:æl#µšk±¡Î8,Î?ûl',È,ûé·ñ^$ô<ñØ£ÿôÇ?ðE`¤àé++/hÿàu
(X·ïžårÕ@š¾…;‚¨S1
øõqŸ}ÖYùSŃúëîçAMV0è¿=S€{¹¨L“J70+Š¢D
hÊ*ˆ*GbÊï.`.&³ê³ÙK¸Äâ‹£ÖqÂE/[¶'·¡ûöQð%r»ßÕ³%ˆàµžÅ_°]„\çZXíhÛ3Án\xPhd_‡Ï/T‚\£V|笵DÃ2ÉU±‰+Ÿc5¬ôΚ³Aóå‡Zñµä[«á¦ŒÚH|uMåpQ[¨ì²d·Ö2“tuf?Æôm·a²@€sÊÖÈd!Ôƒ/î.yôÿ»Zf«) ó¦žGÚSÜÁM&9+Mç6ÑØ¦ló
F5æÄé¨8m][]Ú Â°e<š"Ã]¤^¢ûóô–¸ÍO6&xt ží1†²<’öXM9õ!›—Îq'‰’Å©ùÓ[o•r!ÙâÜp#döŠÎ‡›TatPÇ.ÉFüq÷w4Ñ®!é¤à+`}µo_¢ê‘háÉÂo#™¡ÙÉõÛ_÷¨tÛ>jÂ[S)à.=4´øÜs^°½¤ã¨mçJ˜ìÂà*Ss"Ž÷¸U¯\¾Nõ°ÏL©È)W“²„²’A)î– };¿.º«Á:ƒ°úÉgP"'7¹
znÃØˆ*ä/ÎJp/AºžÛõÿ5 M]çYÝÕY‚ t®p’•R(&`õ!¤“Ê}°9«Räå™9¯e{TzH³ÙoÊVªXˆÀ(ÆA‡ÀYöì³–1Y˜mÈTßjÊ–R ü_/¿.D‹Úó »„hÆj̃pA:<ìGaȸ²æ Û%›ú–›,^pÔ«&ô¹FŸZV#Åq›ì¡ŽÛDqj0¸[¨³©µ»Ý2°×iÏ1ѱ5ËD*8¬@Ò`Ssb>«¡pÖ¬MÇ-ø–*I"5ž¡Í„
£ãŽåÄ8ù‰s9³õuQ\5\MHÇ6#uVâh€,÷fÇwü¿ÙLIÁ˜Ouµ|êãO§7ä”ò…O6ëškµÁY gù`Të¹ÿW¿ìgE›À!…Ü9b/Í1TMiEÞ/m„`·Âå‘RäqÙZmYÎhûv@íä) ŲËFãzÄÊÕOÂJûî¬ëz®U0ëE×CCMÅë]Ióü",}2ˆÔ,DÏ1HÔéÙÝ¢Õqƺ҅»Ýq·ž«{mÞ©ÀÊDcÎE“ƵwVù¾ß€æ/§Ÿ½ ‚ë¹KQø/¹°(A<ð¥Õäy–Öwq½É9ÉEZ%Bx1]YâDýA0YRÐžïø¹PU‘$i拞×oO]'
?‹Ít£ØS#øY|ó ±íw„GŠç.S-¸0‹¨r;MS”¡a®>]ÔDÌ¡)€~”çU¿Dw+ÿGÒ¬k¯±CBˆ tà&Xƒ€ªÒLc˜°ô.qN«¹u«üÑx„³KšUªJ+]øÀjvw(Ìœõ»G¤ð4ÑaõÂŦcØbíØWùÇ^4aXiða‰`Ë'?‡jýPH±+·ž¨ø†yðÔ_Ÿ@ÕlZC¾¿|ìq=ƒ‰íG½œ±c*PÒBþpzD(ÊèÒÝ;`ûQ¯‡d·²v•€¥Ë&é¯MÿàÌþú}[+ €€lˆþì7µ@ô#ÒBaÑh„º^xVŤ+×ñ¸£?o&ÆZô ¡ƒùƒåŸj% 3D?¤ààÇ€žPž…÷
MPŸ’iJ¾Và~Güç,²è"xK$<ŠDQ0\Ç—ÐrjAlò.[:(ʳP†‡~ó[a@Ba¾("â¶x`³{s`CG!±µÝ˜5M‡¿~zÊæ±Ju«ÀÐT…\ÂP,'5ú¬',tW»½4\8
.™û!uЖíW?Ê'ú³2[ö+˵ýE\ ¹ÚyQy¡n0—“Ù>`Úÿ”-ªª¢iµ¸åþ]¸÷p”;½‰©‚3p‡ÿþÍNÙž.Ÿ˜Ú-2lÂjâ*ÂD@q'PõcŽ:ŠßK¸L”¦nŸ|ò¯ðja‚±ç5šnçD¸¥À%•ƒäR¿»’ßcÕ>ýTÅ©BjP}nÅ¿*íÊWÖàOÁ¹X^hdjí‚&V`KÉòétÓì‹|€võ)S’Ƥ%(ñCÊW!½)%Q “ˆ±UêOý½€÷dbÈNûnïÛUVj"
ûXÅågå UÖ+W´ºX!m„«Æ•É幌Á©YˆêäçŒRù0ŒI gÈbs\””´Dß鲂[Úp kZzÁ›Ñt£¼’+[«éF˜ôFÈ[„™Hªv¹àrÀ§Ë–›÷óÚöüòúë‚·Â1ÆuéÿÙ†c‰
$Í`¸‰§žb÷T³P(²ñ/qètˆÊ‚Ï”fý•Ù/ˆÓÀ1â¶0‘f†ô‘Ûß»SìÓËK»EªRLÿ‰WËM>>‡ßþºÈ]% ̱þt’fÀb û\Ò»V]e•žtïéK„b,½.¹°"½êyZà
$hfß"Eœ¼[•óíóÍK›88hS+õ(–0ž7Ù–ª~¯$…02;cg|y×jk»ü;äxùÈ^{¥ï&DrQõ`à—×AŠFDš†ä“Gà®jyĔɓd$E5JS"¥}TŽ™+í³éõú²l0Òˆ»³FÿøûßC%L®2%LHõ |ù¥— ø\-?ÌꎩnŸ¼ÿ‰íÓ4«x-qf»¿zÓÐõ–å÷@1v€ABþLé‚$0„úfüŒ~‘EÕ}ïúYÄéðî»Îq'[º…2%¾àRLšŽV3säôZï㎟ýœG“ôn;×rÜú TåùBÉÌ%DÃÕ_‡†Ð§Ð
µ±JÉîûBÃâ8%(r‘½QìëÍ“€]¶q ü*kŽ|ß0b÷Ê/¹ºÌ¹M?л ¼áJ+†ŸAtì”!³Š‰eWrk¿ùÛ"ºäØ¥_ñ&G·h!{T@¡î%¡ÏÃ[õ|ÿö(·ZqËd©²ŠÄ$¬½"J Ãd<ÛoÛµP9:.óü=‚0@‰zuEÊlÍ^¦åsÏ?/†\"~p#|üÇ?üíæ›T,š=yQÞ€âÉ
‰ü)q–½àØH«„°“ïüYð?’ÛAŸ_;ñDzâ3üŒ —g¥Õ@Ë‘×Â|:ýl4 ET° èk‚4Îo8ElqIþ„ž(o!ˆ?“>âÐCÝ»Kd€«ð$
aZ={óî;îĽÅ]€~ øïkS‹®ª(Š[ö^@¶2¤ÑÝô,À:ú6àˆß´‡TH/0hªhåpmfy½÷Û&ƒ÷ŒÙ÷,‚Ae‘M1ãh.”h´5ÕÒìÄ|¿fâxŠ‹É6ÄŠ½8!…ÖŠ2
}}Û„rýàs•3ÖžoØž8ªz>‚jý6çŸÓ)¯½¨s—ÕÄÏòû‡’gqâYÞ5£üµ¾‡[
3=°+ŠräÛnKÑ
ŽVÂç,nrÖ”½ë/‰:ph¨¥–tI• ûáN(‰h„¸o”xÄ)n«IƒÛ´wE¥r ¸Ÿ`ÅE^ɲÏ;û‚e(Mª A¡GË¢.lIþù‡õ1‘Þ¯Q€„´t¹Ð¸Aݳ2*RüRBˆž5P؃ô©La*Ý‚—ª÷r/﹤´ý"C!SâfØ#v˜±=QEª‘CŠ
8œâRðmà A¢E~tï½qÉɃ ½Ðâ²úDÅÇÞ«ñeiÕö
j“”FT3®ÌW¥jÅɇ•TJ„ZÕ¯òoÁn#Cg‰ÙqÓ$
uWwœDmJ"ÛÀy•~Œl÷-*×þôåF<‚¿yðžãàf"û,—ÝúË{Hö\Nš$- Ùíö®ÿ#?ãeJŸ{î9X=k\HZ6|Fb|ÔS®Hè+Ã…«½{UFH2ìíZѧj`‚Z¬;}ÜØÑÅÒÕ箿ÞjÓ–p
ŠZž}Ö™tÂ’–(¢ÐUÖ±¢D# õ‚Ÿß¤,íKQëHªÎ²E"…m NÇîQ?„Ž’#aæöÛw_«‹.ºˆFQuüV½Ús³q¦ÒDmœ%”2Š 5.ò8Z
;[5ÇB±êø Z•q^Ž
)Ûï¥Ó+tïyðŽ‚d]´3¤_òL>’x¬p8šM«^îéžÞK®Sù$ÅèÞÜÓ~¬²
o٢
A{©êÞýÛÿÏkY<Ó¥ãÔÃfü¡Ôn½Ÿ•ý©H‚”yYšI*¬gâ•Wç1Üø'µËtŠjΞb¥Õ¼o}+ÅwmaˆtaÝãj\HþôË{¬8ÍEŽ¡Ô¦•2~)ÁÎf~Hc/üFoñË|à#?¼]<¹¿~ûòËìê0hÚC8<¡ü¡ÎßÚóY“Ž`²¤W/>4°§²½g|IÈ‘þU+Vö½ŽU¬IaJV ‰¬?LQó’r=j½õp½—¾Ò´ª%íìlÂ'§œdXO®
¸s»½9x{~Û€°±º·!uèy/)M/èY€ƒ£ÿ;,P°§º ÄwN‰vkæSvWЉdÍÐÊG€—?H"™Æ…^èÞ{îF§€hT?:òÂÑx8cιk͈w*(MÀ÷Ü€±ãæðK€TªÚœ8üoûRœ»@hƒŸK²ŽlcƶàBBÚ'SùÙàtðý’2ýì¶ÛÙËí©×EGÐ éÀÃø€Žª}‘o½UîïëÔÄâN»UÔ;]íBÔÚñmhcù•-á
ËáEË€MKyäÓ|‚ª¦¾±£·Û¢ào(—csqO¹
ž~úéÏxÔLÅÿ•¦°ø”Læ7Mèù,4¹RAíDÅÜÒú%X¾Û®»TõšI&ûZoäÆx1l0™.d
c–¸„\àª\òm*°ð?¼,^¶†+K^dèæNë?ëSl1>fPŸE¡“ÒøÒÌ
©Ðu¢tõ
ÿ,R¤ã—pÎÐ@`÷ÜÅÏÎK…1¥ãiJ‡ pÜsqÚàÔГ
BöŸ%ºÑÅC\Uà éÓ1lÓª-¯"HQ€lÙÑ Ãèwpùv“#•(ñdÄ
,c*êŸÄ%Usº«[]R&+î(J°Žqôõ3´–=¯j«ovÿ.b‡§©¬öþûíÇòj^OyY©Ï<•¯h ÷’P" 6e]áP¯>óÿviµâ
ËŸ~ê©éÄJþCÃ¥5»R“°Ê%ÈÍŽjœ’[»ðBñˆTäàV (žuÛ/£|”TO—6RyP?<2ü¤¾úµ˜c¢ÝHYyäη/½Ôíêm·*$š\6> ÍàØi
º5RÜ£r;> £i3"›âÚ[f™eÀñ!pÇ“Y‡#†ˆ¤Ñ[„Ý*µ‡„»˜mÄ"òˆð ê-*'Ÿ}ÿ‹i“ÀÝxÎ=û[ú²%q»3ÚÔýí~ÈòYE®ª
Öñ²G*•æL×…*ƒ¤«ž}úÌ–˜§²ÿÑϳu%Hr
XëpËÛøv/m㊢ž˜¼/dcÙf Ši‚mÒ”BlVº!¹¬§`}ô/¾þÚk @ʶô´Ün-ÿ/ú'iUOËl³[±x°¾å¿ž0W)ËQßuãê+Õ°Œ¨Éˆá‚ÍÝ©|Xê·²Veê!S4C€˜ZI§ÕGU¬’@~ H§“Ë´R†`ðsÏDt<;íPw‘èiF’퇓Т+ùÄ›xÁš’¢Ë5}Ñþ÷Éš@ëk1¹Æ»6aÿ_$¬(¶è½÷Üûÿù‘? @Q³…Ø~é¥ß.œ–ÆéyàÀe6jQæÊ˜zÏ‹#™(Ù$ÙT»ã¿X•_Åy°ë¿¥äj©µáN¹ fX)7òñ›7½å-ÎmÍ.€þx)œÜ‚sK*’4Ú(B$\åЃú"8ºù¦›ˆH'M† UtZù „j—v, äà8‘Õ(„3Ŭ~Õ¾$8˜h9A~•2Kì¹Hõ1²,²1 @´Î|6-bLiýàà «µ5kB®2ò²í&/Îû—Ÿ'eÆa‚(6!s…@F¡Á«§€ŠRíR£¨¬c®¦\*éD¹Èž}é¥P¹À>"Tj"{v0™…£í-5Ï}Ï÷?ºÁ‘‡ìÆÄUÔ©$Xpuµî^þ“«©:ã»ïÒ<ø¶av¤@)‹Š¿³åRÚbþŠ]O„t('bUéÇ*HÇJexô ¾¡³¾yN}–bët
ËRjº/•U¦‹š CCI¤y9t%Ì9x$/§ºJÇ.cþ]ÍkÚeavi膳°Ë-Ù6¨ŠË-»Œ›Tb¬„9â9QðÄeÕ‹¾Š”¯¢dCCd¿Ì¹v¬R,T̶`Ó–3)ÌŠF¨KÕ‹ÌìBލ|ð ÛC”¬SåƒÛlÍíêJ«L„CÊðþHý(±¦žÈ5×X£K=nXÍ,“Q{phŽõÔjŽEúÔMÀp²®™ž_Îf ½NòèßAêa2 ÎÀåeE]’ÍO¾¤8ƒR¸N‹µ¾¯¿öÚ.ÓE‰@ú$'O9ù$ý"ÈöÞöÛVy¸–)˜z͸W1kà±G}mB’¨g–=òãg‡þÿP
ÞK/¼ %,ÉÝá–ÔÄã#ˆ¤´ú4)/)¿õ½Å8{–>m_Ÿ¤7¶'ÕÏ–£ðÄÉ×Yj¾y¿²ýã
Ñ<ã%·F›5ªyS¥aÕ¢*öÞç¨fœ˜¤ÖP‹«¦M(€ïåvíšN%Œvò-?üÁRT½§P [{o;zþ¶ŸÜ¢¹rWVK d8m(=¢Qg·ýØÆ8é¥à% …¬»ÉÚsfÛA'"ë1jº”·ì"úmsô‘…*^g¹È/!'Y¡péÉwlªÚ
–ú‡ßÿ¾~ë¦$v;0"\Ø_äÌK¤Rlzû_8T0½XgvýdsÈÕU(2Û˜»(PLÖ]¦„æñWqºI*˜Pb¥Ðð²ó{L³ðîu!ËeÒ²à)µ+3€“»{-Õ–Áñ1¨â×ñWGè‹”<û<÷ªˆPÞ‚4}(/ª=aeYHž±°õm%œîÜ¥ ”ÚßÛ$D÷û5Øv‹¥ç/loÜ
.B¾hu)?g!L:/?þáÝkqÌ“²óêÛP˵V뇥VäL{䑪g1Jµ‹lPY¢àzqNâ
‚÷©¨¨¥É=0£2oi8‰ÓK/¾ˆ?øÝû•5}µg¢Ÿu½ë}náÔk\ƒñ(Á)'ºãtG…`\ŸþÄ'tBpè4Ά.œ¿ÿÝï(7ËïpYjݰöÛOZWÁc§ºrýšN¨"
˜U©?(¼T •VŒä·eF´\Jú(…~Køãywþê‹Ü”5} Að'õyÉÀ#Ęí~©Û„E… è~cÏ–(¿ÄOÓ•°ÒŠ+Rëy{Kƒ÷î\9j–˜w´¢±sªF x*UU–\_Ù’¥À
Y<Šiˆ<óQÊbЬUXeG;¥†Ì<üé{R+Tü\ø$w©Ëå’Å(º™½[70®}úwsòWOĽBb”˜ëMå*è
Ÿ®æ¢pu’¶I+èÚôåð8Û…”†ëØõ“½xú>þ¾j÷hö·k€`ªDâ_£b£½úÿýà†¾v‰¢Ôp-¸ ާ;µ}.t—pŸËoÇI
“-Á
gsAÈÙ1Ó[awê{Ƨ®91BÑPÓéÅ^$o)é¨2«Â€Œ3öD&*ú‘\ø}ªÛËUJ©YŽFIi$ƒšÂWg/Á>øÀý¶Œ¤iHôµTZ\³¼C¶e}9ïí½¸ùöxÿû£¡—ïˆ`¥`u6ã§çøÙ8ʘ¸ýèõTh4ù°â¼B¥Š!¦F„2«tº§Ó€ÆJa¥ tÂþŠÑ÷kRÌG'%[”\87Xˆ-iýv¦ Ö(©^YõŠ9iB•zÔS‹šÐøæM7.Jc´P)]}ŪٲSr…¦§¤:<Ð+µ¢SеóaþrÅ Ô`ÃJÿ¸´Qp¸`aÁ[€´E–MÜlÓ}>ôaöUµ8^¨—KHPA,µ‘¾õÍ‚ W/AÕÒ*!iÅTÌÙßh¶ð‹/¼€‘?¡s‘Oƒâ˜Žr<ß¶«M/(v.seòÂ`áÇZ›eJÈûõ"[‚èàÏ<óÌ5c„6øÏÿúÏËJÍ®ýå„M7IËóµo~˨\Ìîj:,³ôÛ³…¤¤¼¦èƒ'p‚†&YÇ›)NùJ%óK¸§…\=÷E^øŒš
ÝN£tÛsÌÀ&UKµ”ŠzIècqo;àŒô¡«—‘½ö(2½v–:Ïåeã�³¨üG”ÍÒLÞ7¥…TG.bGÒŸc÷ÓNîý²ªuÍ×_ø§Ä^gëTpl2<ú: ÌÒˆ¡)bö¦‡½²ÙЀúÊq" n-",ƒvˆ‚)ç\ylµrÅ?k¤»É="" Œyœ?̘ŠzÂcχ&Œ;ž¬r3@f‘nøƒ="">{~Ø zʶĎޔݴ(jRv9oþá •&tšÑÊ ŒA×sxÒß@
•5,YÇs🕖0uTë£<Ù€nSª€ß¨qd=·ñìj°ä’o»ðüóexdºa׬µæHí\‚tÐ
*3/Béƒ4TÝUç”L\¶h(ú`“i#5iz\åúÁSeÚþù柯¸KuÌr5ñXL»…£]Fuðg¢(ŽÏ‹Î¿hž6°±æ]bÐm
U®ì¿È!½áF:7ëÆL’¶<‚˜£ü©m“®(Ëõ~àgI¥ÕUD½øŽË²¥qŒp´…$JaY¸ù$‘6H¢¨"Åä•QP®´=ÀŸL»[\EXõCœXIÁaÕòE$Y0å‹ )Ð4µ.‹ž§®s@'§Ió,AºmšÜÛÕ)/åԀܱ-‘ú¸]dÖ°¡ú¢Llz¢’çóñ(ÿcMËö…NúâóÏWFm5ˆð¨
«€~nˆêuô‰Ïh6òÄ÷áïˆ|üâŸÂéö~C‰CDOÚ =ËQeév½Ä*á¨×ß(W”‚˜=쩦#Qç§eÀ°-ÛP f,ŒÈÒ%ÄÙò «ÂY”èŠôO!ºÂ|³%*8T43…–awõ§?þ¡ŠÏžÛ]ßr$СL@ƒN9 [–
ˆe}.¹¨Ù–xNt‘oñßÿEù¬K/¼pøµ0¢<ÍZrŽ„-.1³U|lñצN0ÒÊȇDhVƒÇ<
V]Ùäg
”qÂ`Qºð9ÒI5׫·*!å…/f°3Ū…‹Ž†† Ô®¾s啤Ñók&ÜßÿÞHtÙ×ÓñÜCü¦ËˆUØ×í4žL½pîRßzpåÑÔ"¿¿£'UËž™½Zd‘…9¨•$–Ù£”>‚ýɃկ66,»ñ»…îI¾¾Ü‚/I=Á¢¡†€¡}ÞÐD*Öÿ¨z-4²FÏp0¹š7|}…Êß é¨èÈ“1†*:–8þPd„(-LŠˆuBlKùÖdí@QßïÚ°í±£uÎÓ"êÚ2›™È€<ðv
sÙ|xìœoý]—€¼ü”uFÎZ§D35¨•°W¨÷X…R/X…Tcnè²÷ý•èlÎm¦1Ç5w[e’«ÉØþ½É³Z"mêNHþJô”El8ËHî
lÜe5„îlq˜—Ït·CënýÁš,ŒÀ¯õ…)=n̲êÐÜVóóBó6¦¬¥&˜$<á1œ¤c/QÂk rê¡Îxy@6d$\û‘½÷ºã§?µ³‡ëšDN‰IÝ~ë-.<ž¥,—°VYÚrÛ½¥jÑXMö+ ¾Al„?IªÍª«v¯…‘]<_)¹Uå""„‹*ÛÌ
µìð€q³t3Ï·áÁ(õò¤WÙˆ¡·Í;÷©•¯ÝÂ33VWÃgSvbXi„ÒŠ0ê +ƒ1P§6tXC-,&Õ@ÞEM»vÒÆ
q`õ¤OíRÀ›ãùÖ•£D«›@ìù׆„äî"&ÛAªKê9pÿ¢òp—ë×>`IJ±û„ˆnRî‹ñõê«ETëç?ûÙl¬rH¶fr•j^²y±SÔ‡
ù·gþ†V5fÃ*aX_åÿÙ¿=ËÀ„GEâ†6ð‡¶Bd]æA:¶È3éþn_!¹¬YÍxPg”ÐÐXªâcjñ/°Q$Íȃò’ ˃Òê~ò8 ïÒXØ`T`YVu‡œ"ÈÛ%ü\¤:šl" ÃÄ[žüµ¯©€`„MŒ#¿ùõƒ¥Ñæx ìi’%ë²P]›³Ï8#²fÊÉZcµPÙLÛ«¨]zùv³~Â)jkA„Ø_Ϋ9°Íˆž£—AçRp‚7=N²ZX|K-¼v°jÞ}Í£-ÄÈÜá ":Îú§)€·¯—HÅ×îzå•— *é*‡¡ÚåqUñòNïÈEzžu%E"¸îàûêK&zMcÊž±òK%åä7—¥H0ÛžÖ¥NÙá\§1lVBvÎE‰=~ê•Ré6;éÁ§ˆY a²ÿL)Œ–SGÍ‘&í€ÕùgŸíx¨ižCÚG`6D8‘ü•„m¦N•öDß%GšahKÓ®7•ÆD<柖YÅíJ´Õ"£¯JqnÁ€°™=¨oMìFß¹ê*WÑš¯ÖN}…FŒ·‘t‚WþÕ›h4]ÉD«ñNÚÙ@6¹f$].KNey•È•ûHIÄ04ùÈ¥©D2š)V˜DÅ$4þ|ŸEhªÖHŒ…¥w§%èÓ²Ûoo;iì*èh‰;Úw>ùŸPÃ)å6DÐ_´÷0»þ*ÙrMÝbr—Xæô¹lùᶈ¶J¹
<š¬zÍêâŸF½â.XV°”)ÀÚ…A&¯-^'ó6Sͬ¢¹@fD0ÞfHÝPMl&ÁͺKðÊ©þ«&!Äa©?Žà©Ô)ÀÃÍC³\E®Ë¨¾Šc€®ÿ®Ð¼`Õ¦q:ý4úÅ1±|ù§-«¥ï+qO¹‹Y‹Ð’?•+Ø…¥¶iíqDi- z“ª®ÙI*bž/¦W²D‹D‚#â³°õê%F‘x
üý¿úßšº ÙKîªVȈ¡Åç™ëüS"—wí¬$ŒÃ(øÄëÀŠr#7ºek04¤Át1‘k±Ý Z7o鸊[´³ÉùбB½#½ÕåD×`î°þ?\¸ƒ¨¿ÑÀ£¢%M}J5=¹8'³Í@¥âƒLǀʗ
îìæ’t9BT¿ýͯq¯hr¾mðJþ–C@(Q⨆Bwn$ëÅ&E‚Ô•ºÄ
è$| 5âÜO#FQÈ_‹j1K.éž%tT\[LšÈŸ$*ÏanE¹0·èEd]n!“ê8~>bà©*¥·`Цól9O¤%JІ)‰”AÙ¹i…,¾þ:žì¾®x®%z'›ºå^U¢ŸT˜ÓK¬ƒå¡€”G i¶0G:r—x$]êRÏ‹Ñͳ~ó`QýÌ^¨–ú”xUC2SWx>hz*v‚:æAðš^Ãäþ aÅôÇABy¡–PsùØ¢ÑôF^7rí-× ¸òÂzN™Œt߀£æç·GÜž]Í®…¢Q[Z‘>B¸–ärµ¡´ñ?æö6ÌPB }Åe—A‡¤-Àäw‘ùm6‹A—&ÖqP)f˜„2~sŒ£ÞIOéG¢Š<)–E- n×Ú0Ê™Ç/ÅJB¥âU¸
€Gˆ¯
*>&I±›!_$NGš¸œ
à!Èm×`Hå ¼²x´„”›‹ösxjª–¹ÿ~Qí¥öIƾ֨⋊€¬2Æ ÒÝ«3ïxëwœYèã*Êe‡îF¸ÉZ.< þ; ¶ßfº:í䯻ׄ.œ}ñ”‚¢où‹f
+ƒF÷‚Ö—cøÖcϸ‘B1ïq-Š(a02Ci+˜,x=†>XG{„Ѐ¥3kG^²ý–Š}ç}{Ö8Ú¬L£©®ZLoJ+°t¾Å‘wo`:ÕÎE¯Æ¡.i±ÙR]»ÈˆñÀ–DÔå³!¥%`›å9gVIy¦‡
°Ò'æç>ÿ¹C>
ößs×Ñ<›®1”D‹”D_1âþH|€ø©<(½I2`~÷ÐC®©
w_²Öõ–ƒö÷ I¬Zþª&Þ4dº¸çE7Á$ääÏNB¶8.¥álc0–VS|Úw;Å:Kùà»/¤3Nû†õHö\ÿÙž±‘‹nhÈÖ×Жœ@Œe–¾6~O2‰‡fëæMÜl³òαô‚ó4mbŒ
bË:ËEq V¡1úŒP˲«TôG #igeS¤¶_š:¹
×ZD^ýñU'ûLÜD±ïìÆ«¯,àˆÙr[7לƟ«‘âÝWÉkÑ’[ûIûhAê‹òÌYª•TÒñÙ׸aº¼&rKÏ,°éO”òE.NB¢`Ò!Iv`ÐíYM92XHvi
cs’k¬ ·%G]y Ç"Ëop’ ñ¸M’Â|W¿w¬8sÍ3w
F´— @ÀL”ŸUþéMoy³+Äó–圸o'–`"U:$þP±’öWpôµ—iš KÝéá¸À¤)iÐê¥n¾_»cÀÝvÓ¦’s”Ǹ$‹&˜b_m9œµ–[&ã,wþ"ãz7Äyµ=g=ëQ-ÁÚ·Ý^¡01¾È3_Ë)í(S]ÚÚ€ 2Þ{ñ«í8¦ª×Ȥà:mZ’¥¬næ5G®ÑoQï×–ÜÈvm)ðà}÷·Vq ìE”
ÑÐNÀF® +ì#{í•jõ2E€!”›¼ig;Ð ”¶Ÿ‘…’«Œÿ¨‰Ô×8ÁAÊÏè€ñ’`£ OŽåT!î†L”'*ÚŠü†R2NR>.ËUÔ…_>"Q H”8€¦¸óŠC¤RÀH@·jˆ#Kø«R[-1wᘳQBKßîÜü-RKjävòµ¯)(6ª+ÖÞ%D]ŸÚ7|ñ´CN/WY*óvCCäÆA6ýÓ[o…Ç¢X¬èhiVˆ(ªszÄиUW:«à …ß“UV|ž³Qqjs2êJi$L•KYvµbådMjj²k3Æ>,{—þ¼ra.2gQ€D®,3·£Å“òdÉÓòº]æñûàYÜØòPLó™SN˜FkS4d~¤Äô6ÎlÆà8ßÍä:,ã2ü/Ê€ø˜6eË)“'!/HÄã¿´Ò-.hï…›Eüåzi¦ôç:H~YÖ
,\"YˆÇßwo¨›RÜAÉ1ñh¬DjfêÔa¿°Õ•J‘YÉ"ÍìeAd¶þ…ƒË6 ,ª±ð5åw´[>é{w¥7j•LÍaLûüÞw¯$V($ß$ôö
JEôïÙq‡´C,qY„IÊÐò³r'ïç2{ƒX(ñ†®ª21Ò=ø²ÎõÔ:µ#?+Ø®6Ψuíy}ôsõêáA”¹Ã²8éįÿ÷Û•r K1°Tx4›n{ ðG†Jpmø¬Ø6Oº(6¨eµI{áŸ/è q¢Kc<&㯈T)%Ò'¥0o™(d™s¥cNò¥¸Ÿ½ô Wô ÉÏÔƒ²Úè’´Ç&¥äßⓈ¤^bÊá²ÑDB—íäæ$˼¦½©;O“õÐø&9;ɖ졯…„yU
e¿8ò'œ½@ç~È!š{ÐóAŸ)s¨´Ùh5Úò 4!UAÌ]÷–åDØWMf†å½yßø
cx§""[ÏÀ<e}RÎïTý3a• ššÒË$0«ÈíŸöë$šÊ²Ø+_§/ºq#SgµÑP2Ü"®Ì^!R[ )·dÏï7Û(3ÚM{ç—K•P+;ï¸C£i—ÂÀåV’ ± !wéß4#ƒ’
¯þtmi Oþ$õM¹ÀÁ“Ôjî9<`–ÑØJu•
ëc옂ºf釀Ԣ‹,òÛ:Y~ k‚{; „PD¥rAüe uul7/=¾
—M9̾Ž8ŒUÊ_QŸÛp¹e`“<[
°çtœµÜxí·L+î¹»1>ãzÐOZ–·”à³p)‚Pµw‘†¤£äbã$
NØ^—]rIÕ~hŽ k®>kÃ
bõ§Ò€¬ZäPqn²Ê»4Ã/òÐÇù˵À2€†7‘53†«´]Ìw)¯Výn“7Y÷Ë©3ÌúZ=WÏ`
”;ÈZ{0gª©Áq_,Z¶gWo‘ŠÖ&%(‰Õ¦ª/ÿPîdGuÆ7Ncy‘Ìqÿ¯~in“eÄf€ ɰ¤Ç´ý¤(‘^¹4m¥ ™/°øòeêöتµ4‰ôâ˜Ò˜®ŽÖrÉ»®
V†Úo>–pá“Oúš£xýª6J$lm~ë–¯†çŽŸ
!«&6DO;õ.5ŒCÚ6а.ˆÊ-¸ JÖsÿø‡¶Ç÷*8u¬ò§rUW¥%ÔlUU!óþ(³|#÷hN”
j7¢À1œSÑWÌ.³´àLž`¬å%ŒñžP•žZ«aUt^¬JÂEN«âžX1ˤÉ@c¨… Zx~l¬bëÌ™SÇRÐWqáÖm‰vùx¯EMÿÿù»ì¼“T[iº~óà6¡/õ(|çt·hì¾^Tg»üÙí·á–†Š«¯®´1â²éXVìE{Ïž{^ÚBA"•û|èCÜÀ•ŸQ3l± _m£ÁÞ%OGä{é?[†Ä†wévx8àÀ|ô;WØÄ´¶º”néª@i%IHpty´Ø€E¤1Dìb~²º‹uÂ!¡CÅá…ë=}heJ
YyÅP»q“G—“íJã»4Ã9ãCWgV-vê``kPI©*™Ñú¼ÑçÂ8ú(ú^èài»l´á²Î/Ÿ
ªÃÈuù`¯i@è8úEIOí™Vª•ޏ‹ß/±eÖk×V-o
¤³ç+4=È%uÚ½ýþ
'׆¿ã„±@NM{!Ң輦OsV§t8£IhŠ;¦ D’®ó}û¤(‘Ä—ì…ß9ßDF´ö†ÿ±Å*£–*úÄ
Ô. !xN¸ñè#ŠjFsÃ1ב¹Á–VÄK•¾/ª¢Žj·ÇÄî€6OÜ>Aè¨Nãå‰0#DÊWjºEE'‚†åÇQç†îâ!‚2¨¸MU6{;ÿsÙç´õ*¬ó’²~ÍllîÙg;Û)[¿Ó>cMÍC‚/ »•ã\¾ùt‰€¸™¯3Ì®,Çm-@']:ç@j ´S{,+N%‚³ôf[
+—V»HE
€Jñ'r•ù_¥šiÜèbYi•MulGË
ÐL ìÝí€<¡ Òd/Ø,ð„Â¸Š•¹P÷Åv}: eÌ5×\$´—Òj¹îŠ!yým§e2OHq—Ð*¬v×IÎŽÎØÁAw»Æiz´€5×L1*ˆËܧ|XµÌ+Í=#eTšÐ£Cº×í‘›)¸´|ùMÇRÅLf¤
‰:½.`_êV°kÀ^OFSŠ\±‡õ.êôd•íìk‚哪v¬¿Žçäë3]¸„l=;'l{e>h.¤e–Y:¯ÏÌ1’…'ŽEN‰µÈÜl¶‡óÏ-xø´ÆX\Šâð›ŸÜü£&"þ”ÅÍ¢V¬íkVmÃÉ'(›ES'–QÝŒ%^
†:i“ØSíQÄ0“Šy=EÕŠ.k0A¤PqK%ŒÈ<¹¨aOöpPÅaE úV%kÕRÐ/l3yÉ·Î#_ˆ¹ë™TÜý{ܦ*ù£^7¸Ò?àATFÁ0ÄŽPRÓ#x8d„ ›p6Ñ™Žã…Û„cîØÉkÑÄi“¸qɦ§·„ù0 Ø·…¤^eGl&N;üØG*¢+;Žh…AþôÑÉÕs ²¢6rñ2þŠ«;›cÐEFèxH—<*.êlí7šãÍ™ô•ãËê줎2(>]ˆz¡ !¶Þý»KŠ%2.ë‚Ô€õ²-PFá±ú¢{‘<ª½CVn}ȵb§á«Qxª¡ÐtDŸÎSIÁXÎç”Á1D6£uõWÒ4Ž_áU޸ØQË.XÅkXÓ>ü7^kGMÚKx¢ÅõøÒ)Ê10$
šìÊ-@Ÿ~ù‹{þï5ÌGƒjÊScwué<á®r‡ˆÄ
²[#iSn{PÃ` ÿðð異qÒëøf»t„còBLQ›áÔòRxµm˜e™e–i©+®ýœ^r"rMßzëžsK'}n<.Höž·àÀâ$8ñK_J[j~èr-0cCêZÉÒðs-â8žjÖx´¹Í/jÁ¢ÕS¬2+õçWRкÁlñ##‘i=îµSM{ÊaxIõ¶Î¬aÖ\ëù©Z‰b¹ŠXðÒi
N½Q`{
“”`N²p”d8Cý·Ü›"ÅTÄt1çñ»“Ž“J%8Q k˜·D´¹NqÇÏ^qÀ×PxqÒ3Z}‹Ø3,Âf¥»J93À‘Ój'|Ð=/¸¨,)
T<êy^<1ZÎØó®Ž
„“’Ží›šYsu›Qëd€Q¥º$‚)¶ï\\ÏšQû8e: F>ôàó
e¾l\/F*d¼ý‘{Kô"_½o¾º=VÊþÂxÊfÙÀÊ,*2
sÞ¸ÏEÈV+Õ«Å]”äÞlWÛ–çvGï,ç˜-žJB™PGý»@ók½e'V,?zË{9†~é„DBny4´ØÜs½Ý–•E樈f¯Üæ‘æÔóOë쎅†õjå0Rù¹nÐXNl™2«A5Ë`µb·½£ô³²¬ÒÝ®š6a]¢µ!–³v\ƒ5ÃQº®2
•k泦‚z<‚“,¾Ž.–LlGÇw@½™7 £ªçì5y²4/§½‡”NOô ¹+›ÞL‹¿ü©"e¦
5´Uu½-÷jœ’LB„E›8û’ ÏŽíÉ'ŸÔ¬ì–P5Š6µ¸5°ˆGcÏé²
Ž<¬*#fóû꡽±F4?XŸð‘Uu'G-5ß¼¸qœÒÌ7õðx\Bä{ª…*Ýl(0Ï,š˜n¡ÞWÄÖ`e¤ó@yVŒsx0ÍZ´AÆ(iaò†Šë¨m·(*VÔ2«'qÏ`&½ë‰ÇÝ`TUB±Ú#†z>]@Cx|ñ˜t ¦ÍF’DZ^TÜÝ‘Sã#^ëf?ùÑl¢¬¾‹ ¡z^i‚ÔÊ;ª
µ[~p.Ë`…[Ÿ) ½+ýè¦áAñ*E›©íš¶NE2“R-"ªÐæ¬[³ç[KƒªÌÖî»w¼¥¯fèG]íˆ;u¯/[`Äu%`UÉ}às¿’±«:n\oö8Æì-VÅ)T
Ä^05#ÌXîP‘
ÖÐUãrKã†uH1~¢!©(½í½{e9Zx¡´Z_Ÿ°ccÖÜún箕nÉ‘»úEx´m1˜$M”¤Çÿ:7ƒ¡%ãTò5Ó”I$•åå""¦Z*¤þú{Ȧ[`ët×0ÇRËDQ´Cò±¿TÕ€´ånºÉæ0Ã4}Ý5×6á¨~2o¯‘ÀbT”8¢U¥3ë8ÔOòúM)ÍWóˆZãNÝÓV±Ñ=…3š‘ú¹ŒL唽·Òc"üf]ª>´SœA$ƒšµ8+Ñ’x¢s¤©ß*y%ŸßSÜøÞq£‘ñ"³ ÇPB¥ŽSßW3Ò{t;!—oì(k»îœ/vÛ£âõ,;Ú¥çסP¼»«cWß°ã?ù±Ž9‹§·†¹ò“¿bëb‘tIfb:*ýÍµÝ ˜ò¹ƒ•x®Ð?óôSÏ0 Þ2rªYx÷Ór#ùƒRDVs3¥1¥RaÿñÍ7|zA@¦U0ó5ç#ÍÈ
”DT@UM>¬à×N„€ÇHŶÿkÄ8‹ÉǨTµ¢RpªáªA›xÙÕš
ñ…$Ñ:
pý"Uê¨ÐýZ|Zé3ø€k;´'ñ±FÓGªƒíG2®è¢€ IÌë|‘Ûì¬Bêud5pTýRæG¯o™2-x—,4~ Ñ
Èx{#¬x-Ò
@\_(\€5lo”2í“Oœrڥߨ© *9ÝwôѯÑ'V¥¯øþ
ß[j©¢,HýouÞÖ]ëŠí&³Ü¹§£}j”›Jåî5“U€ÌÏ9i-¿ji¨©9uLP•YQà¯ê"'tL UKLÜÊ®;#m5Þî¤Á¾ýŸÞÏò¾ˆ4Z$4{ƒ]œØ!,-Äþr
áìxƒk[Žšªg&ŠNŽ3 'Ìßý®£?~ÏN;ê½ à¥ö\n¶©RÑ"°”R¦ç7‚Ü¿˜eFÅ`ÿÚW¾ÒE!âÕ @€%µé)¶¾ìkz“\ÁlŒ=gV¶˜7X” ÿíuÕW(zÒ§ïLÙ,Á¨ƒÛj@ªµÄ&š±‡}| –Ó*LÚÌJÆBŒdqXu#/*h¹brlŒº
.*g]F*Ÿª‹lÚ¬)u¡\S¢çjë«.k½/ÏÎM!µ¯G§)Eí,GÈÉR{‰¡»¿EÎ+Ív¸(»ßhkØLçnâ¯éuòQ¬ÃH(RãûÚM^0©v|{‹±Òô^ÂÈ .÷J›*1hhHkAº{-e«åùêþˆŽ-Ó !W,MQ‚I¢"Ë.¨cÞyÑö[zãN7©AÄ-õö8€•wa›Çâ,ò”ÉR(XN¶YU0¶Që׈5¦J™Š•ÉŒ$
ˆ Ú²zæšßš9Uƒ†x©ûÊ“jÿ´œsŽæÍÈÚòî—Åm9¹*º×ýölK8jšÖZ1qóÍgã‹s„z»ZrAÿÀý”öéãÔ`A§…§ÜÊÀ™–ñ¼sÎ&^ñTBt•DO?`ߺÔãƒg†JE`îôÑïxÇr]Êý‚€¤©ožzê'öÙGQ”>ËÎ35ŸôÐÞ»³ëÓH?¶ú!n‡ì7’E›rVèkû.VmÛzÐ3*÷N„lˆäZì“2py#7R6äXÛ2ZN\—°†EÔ&h%ó"écÇjMEù9bð
q§þiÈ@ä´z‚;-:9bÛ-–˜gnY
„®¸ä’áWJ$UÊ~«²gôjÀõÕ³->üåc¡Äkz5ÈUtÅ“©Äºº']I_¯0œÆ¤+ÉÞë—Bçwݵû®»6qÚÙ¤q:‡t°}ÿüçóMu›¡«G ´ÜþÂ/’;Åí³Ž1xô‘GXJ¼lCÝRÝ6‹ùRöz™º#{Õ%øŽÐ¢pdMeµ"™¼ÇO—êÍ©Þ H6…z¦Y`fåí1BÐêCªvEqÚ§·‡»*
+QÒPΘá€4ô¨žõèÍm,35#´ŽGØø#ï<06gaoß}gU_s°Ïyõ•WV sDU)HQ»¯ÞpýÂ"Ëæ³›¾c_·wiL…«½>ð‹çY0À©åjºôóµÁÙÇxº$Tv€¡â-¾ËFc{Xš€ÚTnZ½l¹å–m'‰ýÁ
7î±ûnyÇ?ѪÈ<ï9`j)ª:†ÙˆªCgL–`Kèí…ɦ[£J£Üõ|\SƒË/½”@s¶ú î™øiÿPÖX³éªÖüs@H·ýh²#;/˜¼=˜šbÎÖ³ÒÊýÛm¥Ê’8ø54gu%¬Õ¥j "•|œ2aÛJáùªTŸÔbˆ‘„ŠÜü•Þ{óñ£C)³VYyeÏîë{SA³¢ñ.t«â‹¾m‰%úuoSÄÅRëBÎÛxA¨kÖ5×ÂnŒ¢ÿLG¶BJ?P¯ÜA"çš{.v×É'žØ×»ÏÞÆøŒÉáèÂ0×ý¹Öbš÷óöŒ–ºŠÖä™o½ÕTÎ’'ÿš¯±DãzÚÔ©V¬pð ñ¬½øB(äÑ2æ“N8Ad>
çËáÅ—~zûídcÈÓ9ýÊ¡ÎHyX‚hkb¿é9oBÒŸ&ZÀNm?"(”
›]01ÒÊyÓcî—°U³.#TÊ9Ô83îªÚ2ËA;M¯FÏ;“°î´Áž¨‹^ÊEcاò¸·ôÀ`<–/¶×„ñ%8«X+ i±ÿÉØ"Á˜dt÷É_}åå*¶U[‚,¬lÝöµbÉŸ¿©=;äÂsÏÅ»Ššhµ8׉1w¬[ó‹/ã´t¹&«½{U¿y°xÏ
ÐWƒ½ö؃
Ó×-í Ã)‰> "ˆõžƒ½Úý}»`ÅÛ
¯‹+eboÇ9xÂñÇ9§^/¼ÅA‡÷|6
HXÒPuÁv4ÝÈÚ#> u°ÝõíË/³c%h0Út+nw”2äIÎï7Ùh£¬(Ü~»mu%ƒ³ÔŒÉ™S1E‚ªEÑÆ/¥Gª1%#É`ÜP‰÷ÝÐ%Øäg+´/cg6Ƭ&›‘s®š£jVvoƒ‡>·Î©-ÂJ”&™¥¼H–µŠpµ[¯·uÄ:Ú5wÜ1é¸^]¥UF¤ý¬k¯!§WZªßx£>¸ÇvÞa&©9š
Çêï«$Fªcq“Bçß¾ìòîï
ØòÙgŸ"‡.”Rvü?þx“†KàA͹-Kî4QÝÏ~ú3窮¶ÏÅn!â;xÓ<]ßûžzCÓçsÕ†àY–ÂøT¢f"Бnºtˆ^5uóØÇÔä&€–±É™P^Y«ú,6oš´åJ†Tb![Åï•ÓÝ™* kÃ2Rð|P/o02(Œ>þepÉ»ÌÄö¹˜µþ¨-k Cq†Œß¨‰¡\¡ØT4:è€ýAý¦ao›†Öq¹`ü;Vrè“R„vܧ?ñIÉz§bóç>{ +UïœÕö¾÷¾GBø¤˜@kÓq4£´›R'«È¤òß›u=îäî½½qZb¯í»ÏG‡ofX<ãß tèøŒˆþâž»~eذôµûò{vŽN'uáì5@ª? ô@ÜžO¤JœÉ´õzk{ÛÉžhÓ)F^d” Èe‡ö|bs[‹J~9QP÷cœº¹À²¾zo”Šü‹¼ã‘e§jycùV“²ŽöH3¬mã`úÅ.°lÒ⬱£mMCanË^l•c·>:r¡¸žµ”‹ö–òˆrªK-ª)-ëéÇ?ü¡øÔð×>[—tï²þd ^íuÔ4,e¸††H΀¸
>9H¦º ;>ñ
ÞŒÈÝñǃ²i£~Lèôm¶&éúÉað®ðîTµ ·,ýy¿3ƒAí$ÿìIcëž"ˆ6Wô»i$Ûn=MŸ8awCMnöñ1ÅJìA³÷k‹Ïø Mh/3VæšÝã&K1†èØR~Ùª9öIFx9¯XäwÚ£5JSwX(°LÜèM8À:Ñ"‡Z=°q£§¬S”Þ”>ɦ¿…,ë-[Ä¿ADÌ
‘2ÎS¥¦Ú°OºdÉj1±¾@öö•QõQ(¨˜bÙMe¨À 7ßtS°K·ÝzKG7¿{ïßÛþþû~E6¬/ØY®**¥(ø%\ÃÙ8ÚÖR‰ý&ºgÎÀVÑuõéO|¢;u€Xnì’sndì°á¨k¶¨ÚSƒF~ãí*Æ#¢ÔÂX_s^óÚŒsˆÐX‰ÊM½ñäò~a(±ÇÊØ“Vk%ÄÞw5sR,ä·rת{õÓW9kÓq[›r;Ûo»M@ Þn©}¤Ü¿{è·ý®WBªý¼u¾·b|Ù~ÀRN`ëu,rûu×|G¢Ÿ+½kÅkpÉ0pêͺæX·VYy%[|…Ή‹]ßmZj¦÷;3¯s{Š#`Mǃµp‡3úxSÔj*âì+y°Ë[ȉ5»x5૱ËRæÀ;óôov˜xG·‚¹žûÇßI'¨:µÂ;Ï™©«ØýE3Ëi^
Ëú¾£x¢Z3ƒ•÷š]ÆT´E("C²þRÊ%*A‰ç8dqQ™GÄV§³Š½ö8kTáÏZn¡åcXŠ’ôcspé‚8,AÇô\°Pº|z£ä§½ñó¨Ë‚ÂôìVÜtãR–Š«c)‡.=ÿàÆïCí“Ôb‹·Ž×HœÏ~æÓ€î¾ó®7¸Ùxï/~ú áæØ«¯ÎQá¶:0`"*$ ÑwîÂ.sձ͎3¶ïëËöìþ¿¬Ìâ—¸Ú?
‘%Î$à`¸ š„Ó`‡rÌrQ·ùÓSð²×ÒÄðÐEùsΊ„@*•šÌºDSËp…¦Þ§{%ÝŒIXù§Tûª‡
X'—FuLŽUÞ#,-âÁ úž³=âVŸëTêŸ
¥XË˲&¥Ÿ”TiF¹çJ²
N9é¤êƒ×tüÓ¥³a‘Ù6}±ýúû•ó_ìÃ1ÌJ|üž}æ}Ù6&¢O5êǰ¥ÿëMÿî,)çÆ…(âÈþÀžÿío~óï‚Ô¿ôÂ?©/¡Ÿ;Ê|ö±³õäà¥Áâ›9};ªÿü§}”gžrðAÈÁ&l7ç_ÿZQô( w#yïM2k£±c¿xôQ]pA
×Ç·PyTïÛ\U€b<'ÖηµöY¦Ê¼7ƒ"30Ý¿..—bŒBéJ‘•
Ç¥¼êV#³?Ïaî¯ä‚þ96eƒbeLJë–²ÚPZ¿>Ò‚®NY†>VÜÔx^³"¢)¿QÛdK“6¤Â¶ÑqÁ»¡Bѵ!ÛecÛÛ)aO]]ôŸBÀZ‡F DNàQúMd®²7¤g¸ßú¸º‡rbß~ë-ÀP·ÛzId-i%Œ÷ q° ²±9Ï©ƒýÒ/ÌG‰/X¯X+èó‚_9î¸Ã9-dPÞ¦=Œb¯ñÄ[~|ó`ð%²Ö·š²¥:¼ù-o湸„Ú3HDÿï7¿‰±A=Êh›*K3ÏÌRùß³òC»ÞÎ3Á㨓¸ÃöÛŸpü—îºãŽG}ð3…Qø=ÉaM SâÈUå§r*×~Dz—Hbsì팯ðÏj³wR,¬2‘õh{m#2°2q¼º}ŽS\«¬Xs 1>+eÊŸM 1SlÂûã«×ŽmÀâ—±”µª™µ(3ºbŒDó^´$n¨¶áÈ5Vgk5 Œ;¾nŽžÜFl-j ”ÍÜ›¦þtÀvƒ8ï(
¥ÙÍ?ü‘l.$EjѰ1 «¡ †/2˱¯GdãŠFóÂ׃TZcµw¿yη´Ômçá„ÞpêãÀƒ»÷žSŽÉ @†Ä:0`"‡òùÃ9郘;üÐC …ã?r‰8*ËL‡U
õ\(4, =Áš8_›Uœ9aØ2HlZ¾lÇ ›ÞT©ŒGó' ¤¿ýM#×úCiÌñÖòâG|áÐï½ê0²^&Jþã0ã—LË÷ßß4È#¿ðW¼'+²ÁÖ#g…T,X†ŠA65ÝêÊm&¥YqMY~ºC+K+öe„FðD«< !¸¨·¼åä¼Û*%Œ,·¼üœ(8!©°¼-vÃû@f6–çRªçÞ«uãh9tÓS5°O0ži3côzÔ§=ˆ0+Ë<’ì?š±‹îj+CÒ˜×kK{-
äÁÌkÉæ™w^ªªtÜ<ÒuO}X.¸@6 pËl«c‘¾ÅÄ ³1£uÜ6Êû
ÑHdiŒY[¬IýæïKÙ´ç
[Lƾû졾"$Mó/•
å‚€P§Ý=X|¶´›J6þŽ/Žz
±3ùõ),2„RWi¶sò–aCÍŽòBR9\® #W¿zÚ„àäɘ~q|?Ö¬åh³8’¨¸‡ŒÀJD‡ó‚YÍ&ø’]_ôì*?#Ë Œ@u
^pÝEä5æ…ݯ²Æ!²ŽöÈ¢N€³aŽö™´ÉF«®¤¼ø•šî?û©Pá¬ýäÇ>’6PwÃwÔa‡Ùê˜ÕgOe—T—J…®€òªÁ½éÍoºå曳Ãþöå—»ºê»í²K_’±ßÆPt‘¬ËsÉõ%‹ˆÿ𪀜Dƒ@EŸ»ÀbW¶è,vrPhdëÂ.
6j×÷쌎F~%¡7ª ÷í—3£ûK¡Që”ñ
?óôÓ 5¢º‚‰qUuÀ”ËÍvÎh;J¨l3&ˆIÓ°vûmõp)féžYxa„Ú§5.lŠÅêCß±ðBEVóø1‘nå=èNj(¥ì’™¡ª¾Ãœy*í'§F"ýVdÐ%Æ`®‘ Qˆ¡¶Cy2祫
cyÕÒº´Â[ç4kfG‚ÏëzHõ3S&ŒYyEõ7µ„ŸýÛ3ðsÉg; ÌÅ]qU(ùöÔþÂë‘]aÔ´Ö"éMi·-û
‡—.2ì£&7
ÐÅ_Ìî=wŸýµízîP/½ô"ƒÁ1õŠD»æª«˜(a¿xÔ‘8ìÙÏ”wFUÿu–üJå…H´5»z>q¶4À¯$õxˆ<8ÏD6½Ng˜ãáâ.Ì>«¼ÅØSœqï—¶•;ŽÅRšf üñÃÙgžÕ^nŸ–U\å2ž0rµ mD»&ÞŒÆÊ¹¥r“µœœÝÎ$Ú‰R‰i@ëÆ*n‘½//¢&a°ŒO.H–ø—I¸ÐàSe”±RV¶W9±XXš6³ú”-fç.ôdYýIöÛrsØÈTŽ€û¶üî+ÍÈæHèÔrÇx¯"–¤þdRÃÚj"9]"7ßì‘?þ¡eO"’Ð8ÿaùÒ¿øÍSO{öo빇Ÿxüq)O¢×©Ô<ÅúìqNe]6h4ÖS&OÄžØsœ4À˾øâÿÈÖ{ë‡"ḽðBƒƒ?Ûž|f¿Uññe,D'YÞ¾ÔR÷ÜuWÓ˜U<î»ì¼3gÆ>øI›o†íüÁÝw|{*Çnþý?õ)pyü§t<…Xm—o׳
êª%ÃÂØw‹Mm0Ù(SÙQ»·kÝÇíP×[ä`Êø¯nÑÔûºÖò¹"¢Nä‰Á‡eÇ—swYÊ»îÖU+v(‘GÙLT-MЇº–ÎtÝË·Û¾gÙ]zÑE=¿}_
8«´âÌì×Ý.ÓÒOôF¾nvضn#ñO<]@H@¼°Ô—§¸ÂúÃWþõj_oú†jŒ“‹·ÆA‰D¢åTø½/jŽIjÆ@.Ôó]vœ1#ôYzÖ‰Bô¼«c2´”úŸ÷I™}Ê“&é€Yó0ôªJâ+³µÝ†R³+ç/®bn•Ê’ÛÅVÞÅê…×NŒ½ìÇÚ˜³ÑFoÃV+6ߢ4gúUã°&¥Õ’<<"œåûDŽºJ´[ãÑh€F&zÔ èɽñ7ˆo;z«uCÊ!N<¡ãÂêÒÌæg±bÅt¹ËµyìÑG…_I®l…±xà-s͉@°³è"‹hc"ç]–PчÀœ#W\véË/¿4À˜_ç[ˆ‡üþ¡ßâƒVŒÂ
()Ë¿óDlñôãfB'uõSÓâ;~ösä53Íy—Á[(¦«d^ã‚h˜8÷P42院.ãijCÐ@™õ!EZ•.öØvSS&Q…Œ“Ów²nœ(†X«Á%m=PÖOml²³Ó‡²ÚI±Ó“(að@Eºb¥Yu1B^dóƒR¥ÌÚ®aL±œj ¡Ž·œL&179kã1¸ËÅW¾ì6ÛÕp*YA0˜G‰âz0µì+Ë.¹`TôeáVµjÊÆ]4¬J,gn2Á»L虑Cw2ÈÒyñ…yôp¶\Ó½øõx"6[üD]á†Òô0‡Â(ƒeøúk¯ê)”ŒÕ·ý$
Ã7“/ÕQ`Ï\d‘…‡ÿq[fF"¢Y¶õ.SJd£š–¡9ô@”U¼rêÝæ•šc(cK:Í+ãÈv.b_±µ˜“¡º—UÑ®BòsÛÈŒf”4Sñ‘ÈÈÊKåÔHGV_IhónVEÒ>³cfŠkAnƒnð¡ %½r-³Ø ¶0g—Å‘mce‹ˆò]}ìÃÖ&ðO<â:¹ëŽ;iÀ¦EãO!‘uŽ9ˆ´kXh%B>)¸ª+¯¸œHÑ=öÉ£ö5ÙåÑwßqÇ7N9§ýÛMËϽRÆn€×ì÷ûša5ô °X¶Ãi[n)qiÙj¼w/ù¯Ý½ûyçœÓï[´´§DýCu
¦ßnÔ¡bÓÐk{MÇeM¹yƒM§¶Kس¢‚9Ñi%¦î'2€¬}4/+OtTj9{¶C$°b«AZUâ#1ÁÜ{¦R&êFy'_*°‚
¨Î²0eúIŒ«>‡ß¹ÿÔ ®àÀ¬»gç4''°8ñú]y¸öABèÆ –LÚƒx¯´Öù’Ú
‹ì–¦‡’LSÁ£ê}žRw¹{‘‰(5’ZLñ.^àà¡Hu[òÓO>ÙïËöÕž= VžÜ=âX‚Ó¦L±$«M‹$Dô2Zû9´bG
K†zÄ¡‡Úßxܸ¾^¡½± ö_.@‚¡Tøˆ!\ì„ÅCÆ»,¦RÃýf[ĸEb¦‰wÁ_¬ÐH«U¨OÊmÞœš&šMd$5©o¡j“˜Èê8NßÑAƒÖÒûEÖ\Ól«5æÚ®V³9c?':÷…\ë¯l?eÝåËŒ¿RÕÄ0
Ab$°FÉêwA[7‚€d«º Ób¨øhîI2%R®
|ʰš¥×'ÞüÃ›àŸ‘žØ3†Môo›yG¼ø·ßÒˆ~ìwº´³áh}ñ–z·¨¨bRÆF»=ç¬3åÞ¾·[Eœgý
]ÜÞØZ¹çèkÙÁ±ÕO6x×
ŸÚ’BÍaÿFzŠZ9Áe-2ãHIô’ì©_㓜Xp¢JåZÓ)»gm%µ0â¼c[5GöyA%ÂØˆOc-&I•F6Yï’5ÖÍ…Cú›€c˜UMc-/þ8[*¸äµý¬ÑëÃ^VT«ÍC˜üº ²‹ÏÖ%ÄñÓÛnëk¸¬›0‘—ú –¡ÞB’ZÖ€ÇU÷ã–·¿}©'+ŒÊìª[`ô`O=éä´
!©õÑü°áë÷õ¾ÃlL*¢>}ÃÑU?ä)pÒøÒ‹«¸0ü_òÅa+ë«ÞŒZZÌÛ›0¼ZE94„—°ËíOþõ¯¡übù.äÏž4cJø*÷BFúÿIØhQ3§ûDf]ØÚ^ðy+2öUY‘R‰Ôb'FBÆü¾”VVÚݰ5ÒÝÝØ½^4't…01ß\ýŒ0ÜXÒGR̪{vFò2T>Oòžn^"E—–fððá>·[vŠÝÀýQöùCôv(«þð{¯^†¦ªÍ¯L5PË#ˆ*[¢Ñîm}ĺk¯Õô.—\x!<åÒš¦fä:¥²¥q—MØW«Zb÷µß‹cˆw!éGšAÑSåuh,"ßÔ!î0Cò+ûsSã—_~EN;x_莻òŠ+VYi¥j#†–^p>2¯™°QV‰§)ùÁd·C°¿rÛÙé1AÅŽ-«Lyý«Ál¬ekdQU9ÞÎÁüªÊ|9wW*/ù‰œJV*ãs*’¾‰@ø³bMÕë·Ö‡g¥m*¶¾åzË2‰òM‰c-ô¸c޶Êðî«,¢U¯Ž<ìðôÞ-'jå…íŸÎ®yô§Ÿîn$k„ßÃE ÒÖ„ìð~~ûO5Ëä]+¬ÐŽD%º_òk¿ž²îo=œ–R·U.¬Ýž0ñ®¿0z%°n¸Q‰(ºT³ã¼ý¶Ût&ñî‘ë>œ·à^r›¶á©0Æ´÷†²LûÉâØw2¸ÐØßd
påì£yÕÊnºœõgbŒ•øŽ#S4•wÕ#¬VeÜ;á¯V±ŠÌXï̪Ss¤Qb¬ÉQIS+#\qA5C¬üSfÖ¬AZ{¯"ê›ÄYækoÔò˪¶·0Å͘aiYè°B<€ñyàþ>ÊðbÓÙ8Z_k›i[«°ÜöÀ£ÓU[dDçdØå댔³¾y…;‰üPݶe“ÃT¤6#
°çnÔ’Âr¥ž·Ì–E“¹(Ñœv†C…”ý+,ªBÂÓïxl2|Km|g~z;ó.6µ¬Ik äe”•®^zÄJ¬Ø·ŸâU±ë‡¿Ö–—[ùé?+Éìô°»‰¦·;1Ý˱)ª"2kl7ŽS2Œ´±æZõèÀ‡Õ à9Æh©-fDR#7q¤!Kôt%‘§ÖŠŽmõè`‰EmýýœÀ.þ¹ïäMF¿k•Yø8úª«úaãXi!‡pë’\VÝzK.¹dv͘¾mpͺ{ɲì¶:p$üP ¸<—ÝÞüœ
bBB¯Dc7Ýe'#¦)o;?äàƒ»Ü8Ì6|øa
¦ésÇñUì!ï%%#C|+’‹N²vtËð€q•Gk¸6mOmAðAa¿:ý”SžL©7ßtÓ«¨À¹ç™rêçÿñ–‡
É#†p¼BTÙhÒÚ6={]WN²©óDG¸Ñ]jÓ*Ö³Z|gVÿÈx»R–M~¶„§Ñ «M³‘›=J^TÅ'1Ͳn¶ê—ÕAQãbÐqx»£.VÖÒ¯µòȯΘj£‡/r>(ŸÛeƒÐ-Ե̻Ì2Kë]çœyfú _ýò^Ù¨oKRJ™¥·k€Ÿè8©…x£¥¸ìå—\j™' Uyæ™§ÓU©m¥ŽÙ½|)T\V`Aße®†ß–.}.o×!ƯìÊ K›çž{ÎR‚–èw0
(ßn›ÆMxÙi!Ÿc–¬?JXذµ€|ñW©ƒ
X?Â¸Ëø³~•”SɲÈ1/¬Žl]÷쎉Á
ãZâÆ:”E‘ÄújêtO¿¢Õ0mñÄÒ¹¶Ù8øÿ–®ùÿX"pàRԤ˲樔¥,3Íbs=֧ĵҰs(ûJ‡3¶Û6=X¦¤gÎ
¹H
8ª”¶åà˜?HÚ•ÖÇ.Þw©¥º‚\ç›Ýe®†Ù†‚¸F`ùD(Ñ[É.ÌÖU®‰›mÚïHæro*(mW)fÍŠ0~Fn^xÞ¹-O?ð3û¬o)H¸ùÚŒ©‰æ´È¶¨ý$õy•eˆ5kâ™Ý¹¡Sµ+øŽŒ!é»ÊéYj®·L-È¢[#Q[9Ýå¶XTq^RýaQUC%át«úŸñÜË.ï «ß`Ö9{ØþÓy»‚ÔËYàn¦‚Á+ïHôpýKgíQ渆æçâ¦ðŸ¬Kð>-qKPcÇц¨#müàý÷‹Hºöê«Ó–ž6ÄËH¯‘À ¢íïMÖj³ÁDÇRßþÊ?ºéÂ#¦× Ùž³š6øöe—ë!•þþ÷"bþ*‡|h膜þ¢ØQé¡ßR]|¹éL-ø–Á½Rd>]…ÎáŒÓNûks%WêhàH¹—˜wîé£×›µæÚ‰%X-]YäºÔc£Ä:@Œ@Éx«£š¡ª£%ÖUÕ,ÚYF
ƒT9P«A~…§çDaÄL•ʵ@‘췮脉<Žº0j”äY¡è,Ç•odY¹r÷Z7™ýFÂz+/=7B<ÅŸEþ0yñô‚ãa)“ÇÑس¼|ÊT[b…A‡€#)]͸WN>ñD-C‰ùÆ’ýöÝ—®š|ÃNÃ"qZ(nöÞsûÜÕK_‰^`ÒQizN±~«ÎŒÞ`}Û?ú˨ß[˜ç¦—‚H8ÑGüçdkCPËšÒp®?óôSݾ\,«ÎË,õYÉemIgÖ¥â&̦¼›z‘±®§Êªyhƒ›,mÊhÞ¿–°^ØU2ÐCE§Ut¸¥wÛu—ö²WP)Iç¡#ðSØùùçœ}â—¾Du{ܲÓð^íþ¾][*)|ó´ÓhÆv¢OvWà\&a Nš0Áæèüö׿vÙðŸr³d+_´oæˆîfŽ9_l±áÇû{Šrm‚;|âf›¡¼Xÿ³Gªv¶+¢ÀVÞÁcÕó‰Ú¡CY ¹ýì^ø•]v®
—îUÁZtëO~Œç±XéL\|ž¹¦o°ÞUÓ&Äž¦ÈbRŽ9Ý,ÅåñžÊ¡Z¼K½iu‹ vX]ÏØ}*¼¬ÞdLJþƒTM¬¢XG!zÛ<ØN|8{Ð
×Ük„EõÎÑ;XIg佃nEmY
kw˜¯gæ±úœQe
kNzsÖØÑ¸±Vµ`á‡ÚüÉf•žE j™ ›j‘k,¼ðBº=@Kc]Â]Ù’ú'kZÂØ-5ëÑ\–dón?DB
Öº·Î{ß/ïum0¯Ãê×/g€Hg{
F^Ø]dHKÇÁ ¸‚ ‘Œ…w,·œŒçïX.-äǽH(;àæŸÿÍÌ|n`ØÝŠ0èù¦PGȃ~pãí/G(TJ+€çVÕ¦cm@#j!¥u[b!’’/Y"Úh*’)§=8ù•XβFOƒD¥œ‚R‹&åtÏ‚3õNk¦9ݪҒãYu±Zƒu™ Jƒ
\>ÎY¿y6B;_áA‰–
µXNê×r*2ŃôÜe£Ñ¶eÖÓèõ×owš²@%ž}߯~uýu×ajÝ}×wÝÑfDèš–ššEpÐäñ¹ÿøcª¾Fcv)¥"\JìPhO7çB.˜¶åªÈsÎîð–͆SÌ ¬¾`hýÊ)mÄÌ>÷øcBñm`…Ç
•¿üáŽÑ˜ŒÈ–Ò[v(Åb²½¥pNÏñãÔkª»Ã½D-!í¡¶“}ö%µ•¢}T-rg¾‘d·¶Ýªõî°~®Œr6HƒN”ó&U}¦R²`FfS~Ÿ•²'oåÉêëqË+é‹åæÎägšnóY%¹ÜY¡=8ETSs|ûF
Ω¯þ¸0r³X7¤kÕ ‡°º€ü¥‰Ê=q{ÐX‚¢Ì_KK*8(¤ˆÃ94?*fOi¨Â¨]ß>¹~ï`œtÕ¯»ß'JûP)²½{(<8Å!bÇ(ÎöÿÑUÁ>}wx»Œ¥U’É×\cõ.í[Ú\~É%(àNÜOYgÍÂceb|ñ–©~K„iŽ ¶ä—á=;ÙVNJ¿ŒÿÇ˾Ö-Ÿèh©þeaÕ#óÖåÌDu ÅúEf¤dåÔ(«¿UŠŸ(ØíÆfFš&N쬤¤QªÇLPliÖçFÜ ¼cø}üÐY£FÁN㈤³@ÝÝîíkeKj+´HÙk¹5AIG›Rù\ˆ0Å:>û·g)ï©{)Ð×P¥1ɉv×yú7è¤ß[à°RC{a¶Ó]5Ûóßÿþwò
œ° Þ}SU$í„Ë+½kEn\î`«e÷€{‘Ã|ôv[\·ÚZ1TR·Ml@»¼C”ßíÔJe“ÑÑì>Í Ë‘™$ý•·È£+A‘Ö2VDĦOPñrb®Š¯aº°:›þ)2,c•,±tL}{AÕhOYVŸ’_ÆC¯>’¬±êk8ã1ÒÝÁêHœõÑ•˜¿r›‰;޵øÜQ8ÿóÍ÷‰}>Ö…§¸}‰ãÇ•EœÍ8±÷"Ζ^ºÀBHÐÔ'éÜvK¤ìQH=[Òb°Mh+¡ãVë>>Øžwè„%9Ò-Å·©?
Z1?¦*F²Ê[†šDâ—Õ}Ÿšr¡¶sùhˆ÷Šº›9Ì9)£úEØ Õ¢uŽõÌÆNÞÈYl+#ìæ2GšJs¤2Rdž²Å#g‹ó©9ñ¤‡ÙøÕ$È8Ÿ:íî>2)#eŽ;§öLPÙ¯ÖbªõEŸ!;éÖ–öÚ²’QótÉzÔd„w=Åõ¤ß\|ךçϘ²ÛÆc
.@s‘oAŠ__5i~q÷]˜ä]÷ïàÀsƒŒå.Û€t
#S'ÛØ¦¡Ðç\sÍ•zÐ`"µãŸù‰rvy´mc™Z¨ úí¶½=ï"xq¹
^Iΰi(b-ýÀ2VEZ%´N&=éÄ›î¢5LÖÄ‹ûN ¯·NE+(#ÏðøéS\J|ôºÓ:_ç8Þ¹ÖKSm§‹è
¯U¯v©°°:IÇ©”˜$½¡qИ"Ç\íA²2.–*vTa§>¬t÷FohMâ{¼ÕYôM*Ùdz®ÆŸ‘P³O£y_`ôÄêq±DOóž’÷ÕþÕ"®VFü¥C3&íì¦Ú’<²y6µ^–‘=»ˆ4q‹«äœÅ£÷»á©Ÿl+°>Jk£»j8ᨊÚïƒ ÃSÁÑz¸ß§¸ö$6Ê·ÒöÜoõA’¡½qNdK+×HYª¹KÊ¥Ù–×yú©§àksgGËÏ 0ÀÍÈÊ4â#OÕÞa{Þ‘QïËå¼:v—…ý"» :㛼.Á¾)ŇñÅ‚ÕÙ4vW&‹sksÁ¶µ=§;Ú¡ˆbf¯ÆV^3p¢1Û"Uÿr³æ”#ã;kó”{ãúý8
`ÄÙ¼ñ‘b´ë ˼1k5äJø~gêfÄ‹Äéø"ß\Ù.Û’Šu+‰mb®s¿uv—{[Ú@+j;ÌÖ
sî7ÜÐïsI”ÓÁØïí·r>½¾rÜqƒuE²º›|ù'ÙÑdbá’hõì3ÏðŸÐR¿m‰%:f/‘ôåcMñǬü®MÚ¤ª–z½Sj›&²¢ªQ)¥J´•âlw_l≂ãíJµ‚zɵhGW¬„•"£²6Â2ë®Sý(’†µôÉ[mAÑf÷tœáˆÈ|Â¥‘|¤˜H«>Т¯V3¶ìÁ8qüv¬ŽÆ-SŒÄŽè¤§Ÿ~w2ºƒPÇ|d¯½ÛÒàV^)hmPbýò÷¤]_%ÁÍŽü}_Ot)}qòôõ ´ñ·Î8ÓŽ¼#igÓC™1ˆÒ—\òmYmK~IâAOæõçžûî3 ¬®Ÿ%晋XM [Š†Ù™©öáHjÓÇn%¯Eg¹vžWTëIöf ï•?%ûÔê+ÅÏ*ì!åõ¬˜’ÓY?FÔ+ʯ1E²—µA-Š]nõG[7ÞÒ6êñ^µÈ)™Õ7PÁa¬N÷áC„1i“˜r‰HÍÝb_<=²©[Ѿ1s+BÔ‹Í]ì´Ô.[m¹EG—ö«¯¾òÈÿHeóÓ¾þõÁv5.aÍXd¸išxrÀÙEó¾žxÃw¯WŠ(Џôuï0_qé¥N(tw6=šÌ-nªCRJ–Õç$µeÌ/¿ò/†›/tùô-Š:¤OsÕsS¤æ\pîy¯üë•an×öÛÁÖ‡T9怨ä7¿~0{Ë'?ö1»íÁ[‚uè>6;É5eòäî7¿%®¥E
å¯Àq_ë¡ßþR[‹D&ðý¹rë‰ @—™µ'ÜiêjcZˆÙ)évÖ†½½‘:Øù‰×pÙIÐfôŸ©ýWë
6?õkíÌ©D*…Lø+p5—ÐÌc¤mÚ'éøì¤WRÀP‰ÀŽoñªY˜cYZ?:£ Û„÷2Ë«TñB‘¿f¤dxYw*‘©¬îZóˆm&±)ª·Æ•f@ZÝuçÃß`Ùvœ1Ã>°…Sºx/mãÝú±
çûõÁ¸Û÷Õ"Ï2~a¯Ñ|6uKY¼~‹-^¸·ìµÁŠËйd{Á¬Û-ý³^çÅòËm'ÎüŽsòË»/Ìšw„´Œ•'õª¹e_»ê3`N{ˆt…¼P®tO¿¯Sͱêßú°\#+žÂ+ÑX¿y4#MFbôUœ6g΄úöhZ#ÈFøú™Ó™Ui«Üö+ù’œ-Vîä˜,ñ2z¹|áŒ)ë¼s¹ÊH4ëzžyçHõ«{}Bò»·=„åBxÛ·ºÿž»ïÖÒ'°/»ÙpxÝú“Ÿtür/ö ñûŽwÍ®fÛN›fGNRöÙÕy›õ÷òËTƒõ/袕WÜw‹Í®¼‰qÐXYÐ ¼‚'(kÚ…ª²¦–µOÙs#jãÄJNuòµ¶"ª,»×b@~;H§@e$cöªÞ†F“Ç ŸŠùt»ZIoÁ¸‘÷ÞÛÉz°4*Déá“(>^ŠÛw1;#.Sù4ÌÁS ÂÅ|T7‘å䬙}YsÙc§üýw¦lzÐV+š-³Ì¡²š9};˜áÞlzä8Yè’`,šÀî‹îk$?’tÒbÔ€ŸÔZ22®vء˶§²ŽÂ‹ŽøB$-]:ïÒÔ¸“à¤HùngIïÒs‹“Ç¢%Û§“³µç¦ã€¹XOsØÛÑÂÆŽ?•S³KNÇÈDÈIœŸÊ±9ÂÃÑkû´¦Œ“9…ÆoôlíGeYñ”HψÍ
ÃT‘1 +ñá̱J™Švxôlƒ´JÕ±0‰¤ò1«%ºƒÈE"ÂÙTnoš…×I‚²õ#MÐ<±ü}P°}™+ÜÐ4¹(%3:âNš9uëõÖ"lä6ÛàЃnB®·l3¡€ìúÔuŽG¦¥‡)Ê^Þ6ÿÜsWosõ›§*OÀà—÷d¢Ã
]î=ø³Ÿu¯)ÿ?n|ü@á>þÑté§g›W_}õÁøè‡>´Âò–>wÑ9ß‚Oý'Í‚bÁ«ÞÑI›‡zRêqyy©ÐÉŠ-§¿KÅØ›v¿4m^«ø¸DÅÌPÍ›:Éa»Rƒ&iŸ±š«6±%vheê5²ÍT'wb)XŒ5ìs5F_%$®ºyûß [cQGa«ï”Ñ¿¼Ñê&¨zëøô«'Ú(¨1èNUë|élÃ>gæTÜ[U*µÙvp–ò¼òòË{î"ÛàŸÿ|žŠœ{.d8Œ©|C½‰PmE¶ñرhÙn _V€¬:>Àþõ¯µA™|_Ÿz9n0O<ñøjï^5+°ä—äZR&c`½•ÇuÀôCÖ“uQ!–Ú먗ÿô”ͯ0^l‹ŒçÁ.•H—1R&V+bA [ë?•Q«cñ†E’9£_þ>Ú¡euTÇN{Ü&ujôÓs½68"™Ä“3~#K¨Rƒ¤ó0àêÕ*
K_Û)cFçŠLÙå`¶k†˜ÁJ«JܘװvV–Ù§µR|žì!ÏlFB¥˜þÈ
K÷jâìÔçtÆxÔËBZÖ‹,¶=7sâŒ"¿'uÌSã—’Å7~ï»l›¾„—4†ÙŠð”ÁÓ·ÙÎ9%ÞmŠý_vñ%HžZfÍœ>½å¹{î¾»Èè%ÞÀ· F"ŸüøÇ¿(#¶øÝ«®‚fˆÞ_xñ¥ŸòÓÛný̧>UJ„âÚï\n/r•7Ü †[7ÕCp)ýiv½SĬxR…ȨÁùàtk⸟íö̈†°˜½¥ÒSIô½åÄS$òßQ-@ƒxªÛG>–x¤&¡&
¥Š¥ž!vŸWO2[1R,U{E,›¬“XÂI$ν¶™Joܹ’_F
ÖIñNczüˆU¸rç€
S›žž—ÚVòZ9»æ 3¦î²Q++ŠŠÔ=Dçzú©‚p°J*‰‘<øØ_òÉÒtK=çŠÅ´öQŸ"}¬›ûêS²‹ÉSɲ×6È.wQ¹:¡¡²üßh¤'Ty°$JèÒISf >ÒÍ6Þ˜Ú©îFØ„twgm0ÊxB"™’³bü¦¨}fYÊŽˆ42» ëÏøÂÝŠùí5#‚
Óìȶ)Š©‰~SÉÝ•¸q¯_¿Wô×j*’£Ý˜5òRåÿZXƒU#µ(Îê9`e°ÝÏyáUK1#ìT@Ô:T¼¬¾ÉŽðÍüAÄmì‰dÅ_zÄYÍœx‘òl¥Hw3˜µtrª»‚í¹ÆÚ'͘
x'MNdÿPbg¯=ö€a9›—;œª÷bTÂFo÷*öä9P?ŸvòÉÊZƒâ6‰À:Žÿ¶[n¬}ÚÔ)Gz(ÔÃ&<«ûÑfØŒ—^tÑûíÇ{Q5kc’tÅG)½T鉕®k1$†OТ+Éé³zYÌÉÉD»UÍ~ñË5ÈÖØ¾ÉEÏ¢Ó×ôoäQ¬LYÁmňÙ>^SI÷£þ&R ¢Ñz¤{p…ívTl—¹ŽD¨U$¨q"3‰>1ðLU¯©¼°'Uý¬”„¿~¯œ)š~ä<¦V’ºUk"«èêbU#Q§+œ±åNÿ™)Ø'ŽxK¶ÓRK-IDŸ¬Ýž…Xúݽ´'±Ê`·oñY¾EYåëùçÚJðè×ó–^|‘²:øûÞ½jÞ†>űqàÔ Í–‰ÊAô8í&DØ#µ=:ï‚Ùµbå÷¿9†+·L½lrGuù¸p‹îD#GÊU]Ùä¶Œ5à‡ÓNÜo%¯O±ÒS X…Y30#×ì
E(Ì8‹ÉËu;5‘*ë¸2¬µ’%yÉD5¹EÑÇÒ3‹‡Š< zc’¸S?.çŠrqÙXyØ‹ÕÔÜ*Œ•¸è¸3-Š[G†ïzùv“Üj˜ij¨¤‡?ÉÒ¸Î?ûìß<øÀlÜíà.»ä’÷ïò^ˆOñ7/ZÖ.“kÔºëy…Àk6>îõì
š0ÒÑ?°ÛnM{¢·œûm¹3ŸvÛ$|¬ÄqS/ûúˆ
ÆŽ#™s+OZ·†ó‚¹ Sö°´:N½,#º7çÿ©¢{¹íÉZÞ…¥;|ª=nÜDÕN¥¼qäeU–DøÚo¡ô2NŽª+ ^–Õ%Nx±Œg'Ì`@…ćC‚%›¿Áʲ¤?úÁÀ[à’'AÒÂhuÒ0·R›¬¾êáÛL¾nâø(7+œFõf«Î3ûÏjkU_³©rcMµAdôš .™Íô‘H
Ô·G+€O”Iª:g<+¶Ð¤VÊ=hÚ¤«§MŒAäΆH•]KÙŸ#é–œ‹fÿ—»À"î±îÚ IëõÜàâH-•ÄËæ•&éÜ,§æGãLà^j$
ZÑÀ-Ŧ¢ßÃÈýz›çú ÊPZù9A´‡œ¦ ØçE)xñNÓçY¾køaWçUža_ÏržßìðÈHL
:=ˆœþ\{añ§Sõ$š9aä݃ãcÓq׫Áë‰îíô<Ø|£SgNýøäM7^m60‰oíš ‰ ½°" ’Û8q³ÍöÞsOÈ1œyúéçœuÖ%\úé–ߌw–A‘\Ô¸~öÙg©cÜEÜÿýï~¡àïzˆÿ…kž‰~ÿÆ«®¸â‹GE(Ðî¾;fì&ãÇ£¢¶Ù )ÜRÀСv¹fòƱ݂‹u«œ2¥gvò‚)òuªÛËlŸ`„fõóK]3ö‡DN¡“Ñ9"Al¡ñP[ýHe–{¯Z½>öY—ò¯YMîŠÞW…F‹Íá:·Ä…T#Go΂ͧõ¥ÎHGçŸrb"ˆÌ€ÞÊ9;c}Ò«<ëŽuùŒÆ$¨šñ†·ŸÇÌ Õ‚&$¹ƒ®aô§¬n•/¶˜tá+x1V¹ã¿êi(Ú9›#þú©UNM«Œd¥a¤;´¶nXÙeñ„Ø{]çõ?#EÉŠ'
]ò¿ÙžáØVq¡/ååxPbüE`yÄNï1Q&Ë'é´6±¸<©X0™’SµóZ³ËiÅvÊ2i¤ÆÇ契y]£V[Œ÷F:-©äÎ1{‹Yµl’‘Që„K|àGþ¯½‘f~…aD
…ïp䬵׽nµ¯™¼ $TLØ|äj@½|ƒYÍÂV_¹Tu‰õ:v••¶µ6Nr÷Àý_·æÚjƒÄ§Q- ÜÁîOæ¨YýÑSѯû6Úº\c=+Ù¨6‚éGÍÒ!=>{ˆN{¤YQè6‘¸ÕK™ƒ³z;¯F‚ÌKÒ°Í£ƒ?™PR.ÈÝOEvªå”À¯êÅH“p\$:K¤Ä+ÀòéDᕨ™_"¿¬2i3u4”¼>’6öß)’}I'
ÒÊ®ŒÄÇdõÐð‚:öø4‚øYfµ¹#=£Üþô‚>JÿÖ£ÕxýÝ—ÍžóA¡À%„ÍuáöS@í?uµªøÒzù¡øy̨Ö]‹:ÆF®6n••pxý·\g$¿™¼öHDOÑlÃQ[Zg‹µGnµîšÅo6%=ì;yºEP^³Å¦×\»Ð›V_+økýÁn×zÞÍa–Y–êÇ$Vf™Åë_™ý P#“ícä…59kg…“¿Éª‹ß·>œä®dWÆP{&EššÕÂWÎ-Âj~ü9j…Krò™Q5Lo˜'ô‹—íy*„"ú¤œ±B$ì@#¶SÜPy‹¼Oý†yÙ½³ÝÞ!@i´¤¨CãƒO7aFÏ4~,zÒ½žD/ÂÌïÝÁVO¶Ç¬=¾B°F¿PîÓúmûQ&Šþgº 3îƒúH¯GÇlXÍ©Ž‰û6¢ƒø_L|ÂëgµjN9€úCèbÓ5Jù}cˆ9%×îFûÑ]°Ûmï°lê“ º·^
õ‹Ç‹?ÞÏÅlä>SüÐÌG©èã"‘d%lª-÷Æ2ÈÎŒ[Šf
„=’õ%_Í‹{ºÛGä†8Â[–ù28LfÛÄ:3Q›èåíQ ߦ^vávmÓ4ŒDö׃/Çé¢v3 D+OíJrk1·ÏW©Âö’][ÑQŸ‘g×®`£#ø‡)© á– &¢{øöçžÙTñìyýß-îZÖÈHÂÿºƒÄ*6ƒ7Ýià<úM,¿ô¡q¢œßØv÷†3Ïø(uj³ûIv+ÇxõÌ63Aý"^iv¶kÑ–_0Õ s¢÷ìlZ¬NÆe·Sú.oÆSõFmXÚ•KO¯–‘û*ªšÅsdö¿YÉ»›g•[.’Ó³"êßü‡1ófAšÜ‚Æék´ÊÏGûÐZg‰CõñïU,ܯcÊ ™£9ayÿ-ê?¥goªŒÔkÒŽ\?ú¥rßݪ'NH¹ƒÁ½iùW+2ôÕü!TœD{²Ç¹XÕŸª]>ü]¿²™ù°äª/b·¹ vÿ¦øƒôt©_¡žs³ãÂÛEo–D"£ók£^¼ý‹žå7U”ЈØTv¯a<¸–ó0Ù—e옴grˆ&ób•‚äl·ûÙïy»hŒ›C?¶ý!–æÑÁ[¯ƒœˆtcóë>‘Åõœ»gõ+†“£A:;×»Y%~æ½P0Ê”{\x£X¬›éÎÒˆd“Œ¢”)»²ÃŽòË/Ú·¹5„Kª,QÉ;{vf„¦*Pf®R{G7X"£Y*Ÿ•·°œ¢ °¦â^ˆòCõϺC¿<¢ƒDe–›‹I´:²{{¾&ªLfÿÚ“ ÍPaê>bôÕäuþì%v%°@WIEND®B`‚`!ðÙ0Êê>HÎ J‰ÆoÍë…€öüÿÿÿüÿÿÿ4œN09§0þxÚí]˜EÓîž°AÒ! ¨œŠ9ˆŠ™ I%IPTœ…Cr¢ ‘ bˆŠT$(&‚J’,(‚ŠdPþ®îÚªÞ98pïýŽçYî}wg§g¦««ë®™•"»n™B$‰‚y…úÿ_É#ÎO©[½by o )¦?#ð_Š©ƒÕëx_ˆ6êµéèÑ£[Ôk_.!zªöSx¨zÉë…¸øõ•
Õ+ÂÖð[² á þo\~!zâK…‹IþÙÉ®py"ŸÂj÷ê8³€ƒu3."§ækÔd}ÞQðÕXÍÍ?õQXÇÿ~Ùýgôï…º
I°j¯ïåzû£ú_'µß·¼Ø6ê”ú¬þõ½„ìç"õ:›´eþ©Ý°ö
kïç'ïŒíWÔT¯êMGý]’#MW©¿eEGÑR4ŠöÍÉþ{9ù¼[S2´¥}íV×cí~G-:ª'ð¼%¨—Œöõêý2_¤pdá]Oöìàê ×±ú;d|ßžÁ>„xFá’ÉyÕÕM)©Û»í·¥Ë'êõZòyma?GÔ~RÕ>’;òÏñzNQÛÃ~à{lé"š%sà;€›¨í?¸tkØ_tßjóÙ@õÙÅ·viñFK9Rãá
7y$jfØ?ÁêHûûqÓ±WpÛ8–=8daöïŸE°±E¡·ë ®Ö›·z¬—c²Û˜Ð?9îcÙqØqwU¯¶êUE5ÖÉ
?ޘ=Ùï&c-læ&Ûç&m8ÖØÜ¡/ì@7x%vl†+«é+øÌŒ+xƼÇÇ•Œ~v³Â0®RõX…÷”'¶WO}¼ZÆñËÉ9nÛ~´@t›÷^IN½ŽáõýûŽ1Žá{Ž5ŽGêq|¬±ùßî÷ðsTŸ|³qLtnZ¤ð¶gGˆ²‰û›Ø½fŒ¸C]»Fˆ+6ŽˆÚÂ$G$K:'ù"—ڦԣ˺˜Ï‚¾¤ý.2ÚïeBúýFÓïðÞß×ej¿ŸxŸ¥„ôYŠŽ_xŸù!}ïÑ~wdû½lH¿ßt*ûÝMgn-ªãA˜‹îW]§9ÌIÀÿ¿æ¡Œß,‡ðÓéøòXÇ—ç4;¾æ’ðÓéøæ
~|s…øÏÄA™ëOܧ¥„ø´ãì£lüb9Û/NONýþtœ3Ûn"'Ge޶=ñ>? »)—»)b7«þqÔ¿¤ßË% ßË' ßoé÷Õÿå~_wjû½|úýöô{…~_“Õï™Öï·' ß+$ ß+†ôûÚSÙïIúï§~©Ð¸u£"iD7oûÿ;lî픎ðÜ¡øÅÌ;NmÌ\!c¢bÆD¥1±>+w˜iý^1ý^)ý~GH¿oø/÷û)ÖÈ•Ðïw$ ß+‡ôûÆSÙïÇËÝ4wyîð†Èé•;lîòÜ!_¢s‡áµÁ?¬hÔ
üÓsÉcËé”glîò<#ßé”glîò<#_Vž1a>ôŽøÐÊ ð¡UBÖ_*ŽsgV¾)¼ÏOÂnª$Ànª†ØMåcÌõ/é÷* è÷ª è÷j!ý^å¿Üï§8ßT5ý^-ý^=¤ß«fõ{¦õ{µô{õôû!ý^íTöûñòŒK=žgÞö$ââ"•Ú‡îÿõº”ìÿCØ7ás@Âþ1ìŸpˆ¡þ)Tç>ê#_µË„ÇHø"õú‹è¨‡>@øWêõáßÀ\FøõÚBø2õú‘ðoÕ뿃m_ mþ=œá«Ôë#Âר×{„¯U¯7 ÿQ½^$|ƒzM!|“z'|3Ôt¾U½#|›z
|»zõ üõJ#üWõjGøNõjJøoêuá¨Wm¡ª·á{ÔëvÂ÷©×M„P¯k?¨^—~X½Šþ—zCøßêu&á`¬¹V_î)þ7ѾÂû Ϧðo„gWx;á9Þ@x.…Wž[áïÏ£ð7„çSø3¡m.ážMxA…g^Xá7/¢ð‹„Ux*áç(üáp¯ÀS„§(<‚ðóJxq…~¡Â} ¿Xáž„_ªpWÂ/‡u¯ÁcøU
·#/«p#ÂËYŸßnñŠÖö•¬ã©loU‹W·ÎïNëüï¶®OM…[^˺žu`݉ðº
·'¼žÂ o`õß}
w&¼¡ÅáÚu!νápn=‡sëE8œ[ÂáÜúÞRáA„ù
!¼e¿`[¶÷8áp®# ‡sMxgk¼À¹%¼›5¾º+<™pÓïðtÂá\_"Îõ5Â(üápîï>Øòp-Þ'|˜ÂsÌò7p-æ>ÂòOpm¾ |”åÏÆ(ü-áO+¼‚p¸Vß®Â0ñápíÖ>Qá ŸdùÛ)2X;5|ÝfÂáZo%|ºå¿ÁWî ®ý¯„¿bùè‹?]ὄ¿©ð>Âß²øL‹¿cÍ7Ðw ‡¾;Dø‡¹á0á)|„ðù
úú(áó,}/Èü¸ê¥ ÿ¢eÂÁ\oYükÅ=Â[óïųÑxKñ$—+žÆ[Šç¤ñ–âg¶DóÜ«ÏKã-Åó¾Nñü„¯W¼·/Hã-žEñ"4ÞRülo)^ŒðŸ?ŸÆ[’Ç3`{¾KñKÿ]ñËh¼¥ø•4ÞRüjÂÁ6Si¼¥xIo)~-á`[¥i¼¥ø4ÞRüfÂÁvn#l¥·®Hã-…ï <¢peÂÁª}'áÐ÷w±]-Âs+\‡pèûz„C_Óx5Yá ‡Ø±1á…ïBß· ú¾5áÐ÷í ‡Ø´#á` ?Oᮄƒmô$l£/á` ÛBø¥
'bç' [yšð«®ÀV&¶2™pˆÍŸ#lç¯WøeºÎ¤ðk„ƒ-Q}¶ô6á·:\m}HxY‡ë§ò
J8h‹„ƒí-"lï+Zo¯ðbÂÁö¾%¼ºÂ+¿KáU„ƒ-®%¼¦Âë -´™p°ÍŸ¯«ð/„×Wx'á÷*üá`»» ¿_ὄƒ-S½ÛHáC„?äp}¶}”ðf
;DOƒû„·R<ám®ÇÛ*ž‹p¹ Xñ|„ÃØH&´ç™„?âðü@Å‹ÞÍáùвÅï¥øy„÷V¼8á0¶."¼¿Ãó •/'|âWþ¨âWc±áÿ†p›¥®=á#/M8ŒÝ øÍ„QüVÂal—!|øcÂa¬ßNø3ŠW üYÅ+> ü5á{¨B8ø‚ª„?¯xu§ƒÿ&rw¾ânÂ_Q¼&áà;jþ†âµ Óâoÿ'|Ë=„¿«x]÷Äó_#¯½)4ÿUFû£ú¶WÞâ$?¾J¿Còó©"c矡ZŠA|·šä×´#½¶wY¼†â5\®)¯-y_Ý#y_Öµx}Éû¾ÅA;R[¹ßâ «¹\;RÚ‘Ú^‹ƒv¤¶ÚÂâ +»\;RÚ‘Ú~;‹ƒv¤cåaÅ+ÞÉâ-þˆäc¯«ÅA;Ò±ÚÃâ½,Ú±<õmïoñ-I}Å£bqÐ’e©o³8hIê‹FXüI‹ƒ–¼ÍåZ’ò§->Öâã->Arß8Ñâ“,>Ùâ %oq¹–¤¾÷yÅo"üÉ}õKYrßþ*ÄÞ.×’t®€¼Kf@lïrmI碷%ŸËÞ•|îmIçJЖ…hî^ò¹´e’˵%>íêpmIcЖ4ÖY¹QK[.¶´å<ÂI‚¶|ÍÒ–ÏÒ\¾æOª-ûYÚ’æ¶!OÑÜÒ–u-mY‰æòeßRmIµÙjK®µ´+ä1H®5i.b£•ÙlåZ@k~@øOV®ö5NrIs_;¬\ÛN…ÛH®5ï•\kV•\kÞ"-)¹Ö<_rY@r‘\k\kî\kn\k~O8ä)¾\kÒ-Кïy‡‚kÍ ‡¼ÃdÂs€6\kŽ!òOy‡á„CžaˆàÚság@xA‹²øY/
ZPpí9˜ðs*¸ö|\pí9’ðJpí9Npíù¬àÚó9Áµç‚kÏWמo®=ß\{~@x Ðz‚kÏù‚kÏϿΠÖû0ׯøRÁµçw„úÓÂoí&¸öÜLx'XÃXÏáö
Úsáœ`=c='X¿¢ZTH®E=ÂaÝ,‡äZ4·äZ4?á5/$¹-*¹-Fø=Š_ ¹½Hr-z™äZô*ɵè5’kÑÒ4÷ïë+T‹RÿZ´,Íý;A|Lµheɵ(õG-`ýã7'Xß Z´.Íý;Ảñ›Ã×v@‹Òµ˜N_[¼
];mJ×® C×Fº;|´ioɵ)]Këãðµ Цt-´éÂ!4Arm:ErmJׇ:AŒAµéÛ’kÓ%צŸJ®MI®M—е‡çúA›®•\›ÒÜüX‡çÞA›þ)¹6¥ó%ä¥h®´iÄáڔ悧:|-xšÃçgЪ)„CëbÂ_rEµ*Í•¾êðµë×ÜçVns†ŒQ\p‚1FµêתMŸeåßw‚|
ÆoV.q¶ä;0~³r‡Ÿ8
`üfå
!Kã7‡Ç[àcüfå¿p‚k„ñ›\Œßœà1~s‚sÂøÍÊõ-³r}§[Hã7‡×^¬t‚}büæûÄøMáåtmÀÊõµr}P²†®
(¼ŽðNðÆo
o¢k
o%bãm´CáŸéZÃkSvX¹AÀ¿Óµ+7ŸýIøn+WŸí£kVîpŸ•;„ÏÓµ+—xØÊ%Âg’èøŒÖê@rÅ#òŽÂá3šk„<$Í5Âg9 ‡Ïhî1‡ËsðY^ÂÏP8?áPgDk@Ñ\$lKõlKs“]ž›„m©Þ:Kás /êòÚ(Ø–ê5ØöÂa[ªï`Û‹ ‡miîòœ4w ß½’ðK\®'á»ToÂw¯qW+6Ãåzõ-78ôÖù¾ëò\î,ëú¾ï×ýŸkéWË>²ìéc—çºçºÜžç¹|<ÌwùøZ¨ø¯„ær½»È
|ú?—û¯ÜÀg¡ÿs¹^â>k÷\Ëÿ)>‡®•ºÜŸ®pƒ9ýŸËkÉ~py-ÙjÅ'Pèùf\+uy-Ùz—×’mpy-Ù&7ˆ¡Ðÿ¹Áz®•º|~Ûæòµ¹í.¯%ûÅ
b`\+uùÚâN7X?ÂÚ47Ðè]¾6ºÛåú}h"ô‡n ¹ßïòµãƒ.×÷‡\¾6~Äåkñ)¾‡ð£.¯5¯Up<^ûàyb°ÇóC<žæñ|ÄcŠßJõ¬Ï¡¾õ‚õ7¬u³üÅ(/XõXçKŸòxmçXßÓ:Îãµ<^+ùŒÇkŸõx~`²¬¹ Þõx~à9×"Nó‚5\‹õ‚5
\‹õxmáKϼâñ|Àk^ÓG½«øW´öÍãµðÜðU´öÍãµzïxAŽã=×Ö½çYµp¯MûÐãµbs<^ëõ‘ÇçïO<>¿êñùžÇk¥x¼j¡äQïz\ßá99Œ÷¼ džzWñ†4Þóxü³ÄãñÑ2ëûo½ þõ®ÇõýJëûï=¯ò¸¾_øSTïz<þûÑãµ?ë½ g‚z×ãµ>›¼ ‚ñž¬Ç£Þõx|ºÍãµ=?+þ1÷<¾ô«Çõþ./È1`¼ç9\¯P|)Õ»×û{<®÷÷yüÞŽý_¯:èq½ØãzÿˆÇõþß¿—ä¨Çõ¾ô¹Þw}®'<Ÿëýˆh|\¯ðùz[v?voK†j.ŠÕ
äô¹¶ÉåóÜAnÅ÷к:Ÿçòù<—ìóµÁ/èsmUØâg)~ð¢?ÛâçZ<ÅÚßy¿ÀâZü"ëx/±ø¥¿ÜâWZû»Êú<Õâ%,~õýk-~ÅK[ç£Åoòy.ç‹ßêóÜNÅ^Îâå}®•+(þ7»óy.è?HàZ‡ÏsCU}®Å«ûÏ5÷yÏsC|ž+iãóÜP[ŸçVÚû<ÔÁç¹ Ž>Ï¥ù<ÔÙçµ ]|^»ÐUñëiíŠâ7ÞÓçµ½|^KÑÇçµý|^Òßçµ%}^‹2Èçµ0ú¼–f¨Ïku†ù¼–g¸Ïk÷yП×=éóZ¥Q~PÛ”¨º2к÷ÑÜŸÅϳø¿Ðâ[ü‹_fqж÷~¥Å¯¶x ‹_cqж
\®m)/mñ-Ú¶>á·X´l=ÂËX¼œÅAËÒº½Š¯äñº½Ê¯jñê¯ã-Këøî¶xM׿ղx׿Õõx-^}‹7ðxmÞ}¯ÅíJkï@»RûmdqЮ´Ö´+«³8hW:^Zy|<µ±8hW:þÚ{V-gÕÒy|<§Y´*ÿ Uim[7ûЪԟ€V¥þ¦ÇkÉ@«RÿZ•Ö†
´8hUêßõxØPûCЦÔ_÷xØmJý-hSZGÚ”úgЦ´î´)õçãAû¸\›Òùa¢Ç×&y|¾mJç£©ŠŸãr-Jç?Тtþ|Áãó/hQ:Ÿƒ¥ñëo@‹Òø´(];{ËŠÅA‹Ò\…>àfK{Òû°—[Zy…ÇïsIï£úÁÒæ 5éÚ=hMºÖZ“ÖÂÖ\'¹Ö\Nkã¼ jÍ%ך4—±ÝÊmƒ¶¤÷eî°r';\ËoVn´%½/~»‹Þw»ÇÊMï³rG -«H®-ËH®-iîê//¸÷™jKšƒÇTœK×üà^qª%inØ÷y./›ÏsÙ}^›”Ãç¹EЇ4—úærAÒÜ'èßׇ[ ?Sñ´öÍž}@õá*‹(¾Bp=¸Œðs_Lkß|^+zðsÁõ -+îóZBЃ®g~™âï®ß\ÒZ·«-zp&á%‹ðR¿Îâ×[û»Añw׳״ÖôßÁõ=ÿrÖõýGkï@ÿ-¢µnÖõ®ìÏÖ úo9]Püº øjÁõÍ«áóÚPÐ{´6ô]K¸Ç²WÐ{tôžKkÛ|¾VÕ{’ë=:¾ù¼Öô…mzŒÖ¶ù_‹}WQr}W]r}WCr}Gká@ß5”\ßÑç
€¾£koÝ|¾6×Ãçµm ïè}ù½}^{Ü×êý©ž£µÊ|^»zŽÖ6ƒž›Isý>¯…=Gïc=G×BŸP|©äzŽæ¦AÏÑûÊGûA}5ÆO~P/µl>¿ï{œÏﳞàóûžŸñƒzbÌíû|-y²Ïï+žêóÚ´ç|~_ðóŠ_Ak×|>_¿äóûv_öymÚ«>¿÷uŸÇoø¼~†ÏkÓfú¼vþŸç®ßõyîú=ŸÇ/øü>×Ù~P߈¹|ÅÓøÉç¹ì¹Š¤¹|ŸÇSó}žË^èõ‚?ùA= ÖjøA½æî}^;ñµÏïS]ìógÃ.ñƒz;ŒŸü žã'ߪUóyîz¥Ïs×?ø¯ûÛçµB§zDFx>Ïð|ž ê¹07 ê¹07áú'G„çórEx>ïŒ×Oy"\_å‹ð|^²â—ÑZ´¯*á÷¥Žp}w–â%i-Z„ëÁs"\?‹p½™ázõüH oÿéóêèïzÑç–™ß<ÍzÖ|ìYv—¼Þ2ú[¢2Iœðóðà/ìC”â<ï®gŽÿ’õ™Óïa}vÏA¼+ÏA¼;ä9ˆ5²~c ÓÆû] xþåÝ è÷!ý^33ú=½ßm¥ym¼Ò ÖUsψÁ"Aߎh›ì{³•}HoïU³®¸ùú»A{Ãü)ÒÿÍÐVšC{ê6AOC›ýø6a[÷mÂ~®R–€¸@¿(m·ŸÇj?Õ>Ôº.Ðëvûy2Ø~IÝ~†j"A@رҧVšÓc…¼'+¬ÛÇ
ÛfäX¯9Ƶ¢yŠVšÓöá9ôýÓvûsEÆÚ/eµÿ¿á—fã:%ìö€¯ƒ7·Ž_síùÁ6¿rdÊ¥OÆ/ÕH€_ªâ—jŽóQzñ-¬¥¹YÏwOÏ&N®j&À®jÙv5âŒÔyYÏõÏ´~¯™€~¯•€~¯âOjg=ß=Óú½Vú½vú½NH¿×ÉÌøö kÞßÅ/ð|îälÁ³œeãñl;Ì=~ür¥Š^RuÛvüTÚúJà´}¸¿Ú‡:`»}Ø6cí—L·ý°ßÁìOâûWÝ ýen|ûuû'ßÃ=ÏiÖ3ÚL›õt2´ klv›°-´é§M8ãú|M»¥\Þ.pÚî-‘ Ýa‘øvaÛŒ´[Š´û¿á[fãñÛ1ª¹f£:ÿ,F“ßrOˆo¹çtŽQ›[ö
¿y–£¦o'aW÷$À®ê†Ä¨³bÔLë÷{ÐïuÐïõBüIݬ5Óú½nú½^ú½~H¿×Ë̵—5ôryŒ8OÇ-e‹[z¹ÿéðë>5ë«~ÚÁƪ{cöñO~óÖþ¾±9xÿ,á÷ž/ןANþ‹okÙ(ø¿&P—©>묟uò•ˆÏG4ƒZëãÌ5%T+7ˆk£¶~¦¶ù3ÿ×ô \ŸÒ‘ô¯OùìÁõÙ•=þúÀ\˜‘ëó¬N¦w}Žg{Æ%üÛKož}‡]xn&<ÿîc…{ÇèµÉhÛÞqžŸù6¸ï>¯ø‰î?½{»|ÿk~<_-2è«Wfòë…̱):^k¦×*½tæX°ªð9VF-îfµøÙTíá½£G©¯öE}õ}!slÃ̘ca,½¦ŸûUH}Zb»$>&¡¦ž•÷cú¤µÝME»hM!Ô
ÔŒ„×
¤FµT¦‰nê:wíUÿ¶V¼hµ›BzÜÒcÖÖsj‹éÏs“ÏÍwÌy]’œWãñçÏš:‘óŠkGÅÓƒ¿M2t¬¹‰ÈNx¡Æ9™=vò¦Ÿšëc'¯5vDáaÑJ4ñÒôà¯æ}W-/SÞÕ7%Åâœûç4´ãœÔür†‰s®†ºÛŽxöÜGÛM9Ö>j‹•–ÞúWx]±cØØðhÝ*ôMSec7ªë¶ÕV1@íÅÕÊ3uTÛ*ÞTmÕR–¢±zµÑ)DqmK9ˆ
æÒ¶gl®¸¶5ó^!ýרX!½M.²¯ìú;ô¯y?—֣dzߤÚïúL¶ßb騝é#°ßbÇÑWljÓ-Û;)û½ÿXqz¢íw
ÌéêõvRð»bG,YBßçœûöÛîåRýÓHt-”§¨=‚—즬µ‘z¿ˆ¶¹üZÏÃß|Ú†ò›{ ¡&MžL|fÝV^£·øÊ¤èËé9zä( \ÎYÚÉ&‚ç@Ìly¥¬ïãcÔ¼/!E½q25zÉ‚bçlå³ÏÀ4ƒwÝèßß%ÿVlßAfwÌ;Žìîå‚Xë°óÛQbá}wlÙèX¶ìÙÓÇ#Ù»¾;óžƒ}´RÇ¥üháè
Q\±òjÇøèØù@‹Á>#¡×çØ-‡_'»å+ä¹òBqi\Ëáû¤¿3º]°góN¬rë>òõXšý#çüZÝ:¥5m{¼>ʦ[öô~…ª»î‰÷õ??“ËíÉ”#²m¼€S\•¬Ð92߯aÚØ!2«™ØÆÌLk£;¶Ñ=ÓÚ(‹m”MP§Ÿ&òÈ#ÇÑ'7ŸüïÑžÿ#r£w¹–²FÙåršeŠi ™›ÏV{ºXòó=•#7kŽ=æØÀ2`Ž-êdÖkÚØ!2«™ØÆÌLk£;¶Ñ=ÓÚ(‹m”MPYslÖ›5ÇÚsìTiæØ©ÇŒdaå†7¿¼MÏÏùå‘e4:Q.YV£œˆ²Ëre“å5ò¹òv$¢£¢‚F!:,*jt@TÒh¢=âv#úMTÖh'¢¢ŠF?#úITÕh‹¨¦ÑFQ]£õˆÖŠ;5Zè{q—F+-wk´Ñ×¢†F_Šš}Žh¨¥Ñ§ˆ>µ5šƒèCQG£÷Ä=½ƒè-QW£7½.êiô
¢—D}¦‹MC4EÜ«Ñ$DÅ}M@4N4ÔèiDcÄýh4ÑãâAC4T4ÒèQÑX£Aˆˆ‡4ꨟh¢QÑT£Þˆz‰fõDÔC4G•hP7ÑQKºÔJ£.µAmðmñ½j‡ŸÆPûÔåá8Ô]tÄóˆ¡Nx–1”†×
¯KgDÄ¡>¢‹F}E×8ÔOtÃkCÝ5ˆh訧Fƒ ê…ýkÐÑ{ß a¢ÚF_†#zBôCk2h¤è¯Ñ“ˆF‹h‰ãÐSbZì ´âÁG4A<ªÑ3ˆ&Š!8*†j4™ a8zš*Óè9DÓÄpDkô¯j4ѧâ5æ!š/^ǹâ
"úL¼‡>34ZDÐ[}èK1S£¯ÄÛ8[´X¼£ÑDKÅ»-Cô˜…³ß{}‡h…x_£•âœ9
Z%>ÄyÕ 5b¶Fëý(æh´A|„ó´A›ÄÇmF´E|‚s¼AÛÄ\¶‹O10è1#ƒ~ó1Ž˜±Å~Gô‡Xˆ1Ègý‰hø\£½ˆö‹EÓtP|¡Ñ!ñ%Æ>_b<ô•Fô5ÆM ù
FU‹5r¹r‰Fž\Š™A¹,e“ßj”„(»\®Qù]Ê)W`L¸ãÄ•q(üÑåE”O®Ò(?¢d¹:k4:“ µ”ëâP!ù£F… Z¯ÑYˆŠÈ
ˆ6jT” M-7Ç¡sä–8t®Ü‡ŠÉŸmÓ(… í!ègÎ#èD;Ž©V rŠÇ÷çÉ6øÝ¶!¨¢öx1Ô!=‡ŠÉŽ!¨¢´8t®ì‚ A]uÅ+CÝBP÷Ô{°gê‚zÇ¡¢²Oê‚ú!ê‚Ä¡"r`‚‡ G
A¡¡!hXz,
Gôx*,ŸA#ÄÑ8Gè“8~chŽóQ8öG£dú—1è}žBßô4z³§ÑÿE?9ýé8ô»ãÐSG>ç€ 8WLÀ9åœ&â¼5gºgqF|gÓI8ÿN™}2F“1ʘ‚±ÊŒŒ¦bäöÆŽÏa,:
ãØç1~ãçé{OÇþÔ/ Ö0ÑMgD0ºi¨9Æ91ºiˆ¨>F7µÕÀè¦:¢ÊçT@Tãœ[1º¹Ñ
Ý\‡¨F7%•À8çjDWaœs%¢+0ι£Šfá7bè=ÜŸ‰sR•À8§$¢k0ιÑõç”Ft#F<7aœs¢Û0Î)ƒ¨Æ9åÝŽOEDw`ÄSQUŒxªcœs¢çÔBT#ž:ˆêbÄSQŒxîEÔ#žû1âyQ#ŒxBÔ#ž¦ˆšaÄÓQ+ñ
¢Åh§µ&öi‡¨½XŠ–m"ž‡u&âICôˆXŽ*9êøïP½‡£gªò¨ÀWâ(ûÕö÷˜óøµó¨W¡b^…:y5æUV£:^ƒšx-j⵨zסê]‡Z×Ä>Ï"š,Ö£†]Út*Rƒ^ÑûlB¸ 5ÝfTh[PƒmA¶UÖVôp?¡fú õÑ6TEÛPmGµ³õÌÏèEAíòj—¨Sv :ù5‰A?ˆ¨DvbÖoúñ]¨?~C/ÿ;jßQküZãT»q®ØºâOÔ✲uÅT{qîÙ‡öŠýqh¿8€è *Œƒ¨0¡Â8„3ÝaŽtUÇœÿBñwòh’RH)‡\éH3'Ç+:ñâPDúq(›ŒH£Sb(›4Š%†’¤‰
Ê)³#Ê!MôC9¥‰-b(—F¹å‘g Ê-ž1(ŸÌ‡ò˼ÒÄ41”Ošˆ'¿4QP%Ÿ`þ>Y–ÁÖÊàQ•Å#-‹gT¯A9¼BåñJ–Ç+~;öÇíØƒ°§+Jcý%*IckwHc§í•¥±qƒþU¤íUq}Õ í¢š4c°º4ãÒ âNirúwI3âï–&3aÐw¢†4~à %¢¦4Yƒ¾µ¤Éº´PÔ–&‹cÐ\QGgÐlq4Y¦ºÒxGƒÞõ¤‰õzCÔ—&7gÐË¢4yBƒž÷J“4hЏOoÐÑP£±â~iâDƒF‰¤‰
z\<(1“/MV·‘4ó–AEci2ÇõI3#ÔC4‘fæl*ͼjPgÑL𙨠‡EsiæîÒÌçµ-¥‰j)ZI)Ô\´–&¢0è!ÑFšÄ E[@ÔP´Óè>Ñ^šèÆ ¢ƒ4‘¯AõÄÃÒÄHÝ#:Æ¡:¢“4ñ•AµDšF5 ê,MlöHê¢ÑÝuC5D7|¯{ê‡jˆž!¨Wª)zãÑ÷Æ3ꃨ/žo_¼ýð
õëÖ?Õð:Àk?{Æ ûÅ ì·AØ—ƒ¥Ñ)JY>Šv0DšÈrÚËP´¦¡haä‰'‡¡%>†ÖùZìp´bƒºŠÇ±¢â iVoê-FH4@Œ”F¡=)MLhÐ01JšƒFˆÑÒD‚c¤‰
'ž’F#4I<Þ ib¬4ñß8iVzUŒ—¸
€þjú° èמA_÷ú¿‰ÒdÅ'¢Ÿ|Vš¼·AŸ‰IÒd±'£ß5è1ýóôÙSÑ´R<'M¬÷zþi8ô£x^šXo:Îm/h´Ñ6ñ"ÎBý,^Â9êei¢>ƒv‰WpV3èwñ*Îyí¯I“C~
gÉ×ãÐ>ñΦoJõÍÀYwÎÄoIëÅÐLœ±
ú[¼‚ÞÁ9>†Þ•&þ‹¡YˆÞÃø †ÞAÄ!G~ˆhvšƒßˆ¡BÐÇ!è“4ѧ!h^š‚àñÅÐÂôYrå爅 /0BŽ¡/ã/¿
A_cCß`üC‹1ê[‡²Ë¥q(‡\†±ã·q(—\Ž1f}‡hÀøtÆÊ+1z]‰ò÷q¨€ü#äUq¨ \-M¶1†ÖH“‹Œ¡µÒä1
*"×… ¥ÉÑÆÐzi2ÂâÐ9rcÚ$Mî:†6ËËß_ M´tl‚š‡ !¨%¢V!¨u21ÒùµEÔ.µAB‰‘ΓCP§”†ÈDF)=‚ºÄ¡b²+¢n!¨;öQÔ3#{… ÞˆúÄ¡³eßÔ-¬‡ŠÈ!hZöàôh*,‡„ ¡8z†… ÇâPA9<=Ž#ô ¿Oà˜#~$z‘èžDÝý$ú—Qè‡F£¿nzÇ1èmŸÂyë)œóžÆ¹q,Φcqþ‡sò8œ»ÇãÌ>çý ¨CMœ³ ÑŒsÖ!Z…qÎJDßbij㜯-Â8g!¢yç|‚h6Æ9ïató6¢ç¼ŽÑÍˈ¦ct3Ñ$ŒnžÁèf,¢ÑÝŒD4£›aˆatÓcš^ˆºcLÓQ'Œi: jƒÑM+Œiš#j‚1M#D÷cLsF2
ÕÃH¦.¢:ÓÔBTSÌBµc"™»Ý)L$S
QUa"™Êˆî&¦©$L$SQa"™òÂÄ/å•&~)ƒè6aâ—[…‰_n!èÓ8t³˜‚æ#Z€ßˆ¡…ØÆBl÷3<–Ïðø>Çc^„çaÐíâ<Ë/ð̿īñ%^+µT_ã•4¨ºø¯ý7Ø3‹±·c.Áþ]Š}¾Õâ2´oQ#~‹q9ZÓrT†ß¡2\ö·mr%æ#V¢4JGDiÂÄ*ˆU˜ýX…‘Õ8*ê+Ö`6e
Ž£µ˜Y‡£læi~ÄÑø#ŽÐõ˜ãY*pæ‚6b~h#ªÀM¨7¡gØŒù¦-ÒÔ–mA_²UšU€Ÿ¤©Ýú ½Ï6iê¯z_l—¦®Ê 9âgôf¿H³
`б•áô‰¿J³
`Ðb±Sš•Ö]èYw¡2ü
ýîo˜ÿû½òÒÔ#ýq7jÄÝèÑÿDø'jÄ=¨÷âl°5â>i*Žö¡FܹÍý¨ 2<ˆÊð ÎB‡pf:Œzð0êÁ#8ƒAøªÀ¿q¦ûµßQœ¢Î‹þoT¿$¥tÌêÄ!WºæïÌÚ;f&Ž!ßÁ¬½ƒY{sõŽ™Ïc(É1º"†²;˜«wŒ®0(·Ìé]C¹G”Ožá˜x#wJ–y¡ÄP^ÇÄ/ùâPA™ß1QPr*,8'r7Ôî_Š÷Ç]šuÚ¿òµøû»‹GŸ)Q2Gqy~ô¸R›GBîÐ.}FÉ;ÄùÑ;;®J-¡þÂs
âï´6ÛÎÄmK²méÓfÛî¸í5l[zç³Ù¶,n[Joûï½ËY—ŸÀýöYwfN÷A™žL5Õ7
özB`¯W–Jðd’nÛ
·m…Û¶
¶- ÛÆÆAìÞäT…²ëm§éÛj-nµ6úü!Øjmô %SiË¥Ù® 4Û”°]©ÔDŒ¨S{眡¹›óò¸»6kDŽ#ê*´Õ«¤%WI:¢böß·mÛ¶á#j*n;Uš5UÚ#j5nµGÊjiFTl»ŽÙ®€c¶+àœÎ#êDgÃ?ÿ¡mÅ?
)x²mFž†[fäÎeº]p~ðŽýd†‹Ä¹2ŸšGzF´Ç.ÐÏ}(qÃ
×Bß&§ß}Tg;Éìy樂;eK¦¦–LŠZ{¶<_*ÞæÂža‘&¿–õe‘±gXÄ×ü4Ã9®™œt‚÷4“šl‡l Ó³Öôž'µû¤µXôª? _Œ>Mu“¦í:µLë–Ò¥}ÇÖ-Û5«HÒ–áFÿÏ©˜§^nô}óíÆ’}»cÓ´–›6IÂo»QÏc#{tOð7Û É“?Ëë¢ÇY[’pÄmµiÚ鯔´–m›¦¤µ¿ºYÇömSš¶iÙ¼eã–mÔá+KÌ=Þ$}¬®z')zôÁ9øŠåÒWÁUgâjœezg•”ÎYí=é³:;zVƒe¾èSñ*ulÔ¡E§”ÆÝRº5mÔ1Iûˆ‚¼èÿ®ð£ÜÓÏ;þ?€âú@=ð>$×oyòu)H´ÛÍÍ,IÓœiczºCþxÚÕ\]l×>w½qÑ‚iš;alL©µ’€¢Ö‚P*§PS؈ÄЪX÷VP©21–©¢ª0
<#A+~
¨•ŒTªŠ¨‚„¨ÁHQUhã~çþ¬ÏÜÝ`7ë.ú˜3÷çüÝóÝÝϬ"¢@°X#ºª(õº¶ŒhÏKDUo´-'RTû&Ѿ¢§È{%0í˜{Ùïû{œZ§•P-P@ÝB…ÁÏBž¨çþÊf×[ðØuÀJ;v^kœ¦ZuÏaž“_òÜÖÒ”\×Ózãú¬·%ÞJ©>Ö=˜´^±ŠÊ^{3FåT†ø”;ͦ‰9•V§™VžTX9Æö2`ÞÄØñ°¶r³{¹1Ò†´½
Ø®8ûDŸp§x
ÇRbÅÛ´™¶ÑFznÇqŽ«¨m¨‹¢¿ÜTÑ—ãÏëÕ¢Yüß*hþ1ª{0XAµzì»;µëºVÚ6~ÕbÇðcÎ>ðßR¢öËç£ã¨ŸYþMÖó`ï€û·ãTG4@ë ³Åøµ
ïò
:þiuÇþmô×Õ¿ö]>~¯{]ƒÍÓ[fßXUq[ŠôúÕ
zê´òP¾Ü=î·»oíúäg·vÁö·¸¶¸½ö[q\8^çb©¶¹W"÷ìÇÝIšûDHîŸÉ’ûó_+_Çz¶÷eÏ=è¬k=
(G¿Ë=lw¸Ü?È’û˜Á³ÞGiW“L·‡í rl&î?Gfr¯ügõÿ£;nqƒÿÝ/Úö;®··—亗¶zgýÎÏÉ´óÆ€b¦C@‹2ïg|Lè¶5¬Žµ¨UŸ;[èï/|È´÷Kýk€A
ê?„ÖA
£ß´ã¥?ƒÚŸ5hcß¾amøkʼ×àüY‘7ñÈÝ×í{‹‹¿BÔòRÛç|vçÎ'9wž
ŽŸëŸëOxããÞø¸7þŽçϧÿ©Ëoüoüoü7þ„7þ„7þWÞøÞøÞø÷¼ñ;¼ñ;¼ñk¼ñk¼ñkÄ:–Š}„„…²že]<*O¥žJ1þqx'ùæø—©Îͯ¯"Çäí™r¼ÜrúéÔçÐe+§ßãYø·Ÿc}o¥Î¶´ý!åú*…œk]™Oõpâ¤X!HCÔ N¢ç¤–[”ó!‘úq(àCÂó9lç9Îîa AûÎîaH‡Ñ:¤ÁòĺÆÅ>ž9Iùsè½4R9A_¥¥.ö†Tì&î#€óe¹åGYj=ßX¶ÆÊ[ã\{ú|±Þ/ŠZâל9kBÆÆã*…ìb^†á³"¿Ã†©IEÏY-§¯kCõŒëϰ® 8_¢®+¯ * wÃÖÕ籋mx†¯‹üŽ@¡*u=×µœ¾^àï.ÊØwv/@º€Ö
–Ë×"öªTì&î‹€ó%:_ƒëZL¾ÞÂðm‘ß[nQºžÛZÎ?_y=k•±¬§Zmû–§BòuDÄ^›ŠÝÄ}p¾DçkL¿ÇM¾Žñ\~(ò;i5XÎ?_GÝ1awÒ(ZÇ4X.,_GEìÕ©ØMÜ÷çKt¾×µ˜|ªÌg‡ij"¿SU‹šªÔ4U°œ¾ŽÙÏ*S•_O
Ú6Û+0_Çh"ö†Tì&î‡èq¾Dçk‰^¯ÉÀW®SÞ‹jD~«‘ÓjU«jÔB€åüó5©ÌÞW-ì&a' »Õ,–¯I{m*v÷,Àù¯Áu-&_m\KE~‘ÏFD·TƒåüóµÚÚmL«§m»ÑÖS!ùZ-b¯IÅnâæÎ—è|ëØ'_Û`t:Ð.òÛ†|¶©éª]ƒåüóµÙÚmv›a§6Û4X.,_›EìÓS±›¸[çKt¾×µ˜|íà¿‹ïˆüv ª¥Ô;,矯mÖnGZ=)m»ÃÖS!ùÚ&bW©ØMÜí€ó%:_ZÇdàkŒ~Žã.‘ßä³GÝEÛçËùçk'lݵöÝNØé„Ý
–Ë×Nû]r±›¸7Ηè|
®k1ùÚ£âøs‘ß>ä³OBÛ‡Ëùç+¯ç)k?XO§¨OÃÔS!ùÚ#b?E.v÷.Àù¯Oé¿»O¾Ñ~ŠüA>¨ƒhëXÎ?_÷ÃÖAkßÙÝ;ûa÷ˆË…åë~ûAr±›¸Î—è|
®k1ù:£›q<)ò;„|©-hÛ°œ¾òzn±öƒõ´…†4L=’¯GDì[ÈÅnâ>
8_¢óµ”ÿî4)øzÑÖê%‘ß‹ÈçEõÚ,矯g`ëkßÙ=;g`÷¢Ë…åëûäb7q8_¢ó5¸®ÅäëŒnÃñºÈïò9¢ºÐ¶
`9ÿ|åõì²öƒõÔE#¦ž
É׋"ö.r±›¸/Ηè|-Óc&_Gat/Ž÷D~G‘ÏQÕ‡¶½ËùçëMØê³öÝ›°svG5X.,_oŠØûÈÅnâþp¾Dçkp]‹É×1[«åuZ¾6«ºÑÖ°œ¾òzv[ûÁzê¦1
SO…ä먈½›\ì&î{€ó%:_§àßäàk2fö¢Yâ~”d¬E%c]hÛ°œ¾–ÆLN“Ân)ì”ÂnRƒåÂòµTÄîöawà|‰Î×ຓ¯5ˆi-ëùA>kbkÑÆ`9ÿ|MZ»5iõ´–j4L=’¯IûZr±›¸gΗè|-§òIÂ×fÄ´›ÿ*òÛŒ|6Çv£ÁrþùºÈÚmvÁÎ"ØlÖ`¹°|]$bßM.vwà|‰Î×ຓ¯íˆ©Ç·D~Û‘ÏöØN´õ,矯¼ž;ý`=í¤v
SO…äk³ˆ}'¹ØMÜ-€ó%l]3ù%uþ¸÷'ËûRÃîUv÷úó\?e¿w¹ßžgºW¹ßžgº7¹ßžgº¹Ÿ²ß{ÜoÏ3ÝkÜoÏ3Ý[ÜoÏ3ÝKÜOÁ{‡•wïéÛüœ™ë‹•±Õ®Üú\~•áúøž‰ïxÏ£ŒÛ×J]SÕúþÐ9VïzûÜØL«w±§×õ•dÑËzkÍæÞÓ0ý÷mŽf†è¿O¹õ×kýãã™ôß°úïSºþô7äðØêÿKˆþáú—äÐÔêÑ4‚þÆú÷XýGCôï‰ iýþ=!ú7FÐÿrý+¬þwCô¯ˆ ¿Ië¿üªÔŸi?Zò,…ìçó×Dÿy¯ÿ¼×ÿ™×ÿ™×ÿŒ
öó¹ìÅëÅëßàõoðú÷yýû¼þÓ^ÿi¯ÿ†×ÃëÅ‚ý|.ûxý¼þU±ôüs¿Û÷~|çñ3tÞþáúrí{/!SìÚ;½WìÜ›!z¯DÖ»$Mïvn©J×ûEd½
izç(3wQˆ^×—[o}šÞevîÚ½Ë"ë]ÐËè¶s¢×õ©œïWAvÞ±u.ötž³ó®…è<Qg½§óŽ÷Ïw"êlðtΈ™yÏÆÒuº¾\:—x:›ì¼×Ct6EÔÙhuæã9ËÒÇ|Ž'ÊóQÿºìšüZ…?¥l^øžËÿà¸S™k–¿ðrãúª²äæ—ß·ÏWAê¦EÔI;ôÅU´]ø\¸ç]8ßH[!o~°ü>ýDÿ
‘?³O'ÒüJØç´Ë…\fϧ۶r;¶Üö¹67ÇéIˆ¶rÑæôN)òzezž63=G[›Ê{N-Óó]½çð®Z<ésrê žEôŸ œL¾¸ï¹‰,ßs¹®Uy׌²]'ʵnüÝôœxÀŸ³üf…Ü£’Vžm÷«6ßÙÏf—¼ýŠO~o¯adÚ¯ø³@m€®úûj¥õ¹ÌÚ*v‰ò»¦%^î‹Y_OêË£^
»V”íÚUI–kW¹jí-ejíêñk“b“µ?„ÔÚ&[k¥Yj?b9êl›¨·ÖNò+¬»„·&EÞ×É—LïQ®÷ųü¶Å»No®ß¶y’ßÅ‘s—Ûϧì#ÿ^ЂV¢R±ö¶ù)”^)»k×3ìœXë„î§iâwMfXùšZá¸`!ðòšó›žÂe¢Áz,¶þk.HÀ@p«/8¯ ÀþxÚ½—_HSqÇÏï÷»wÓm²9•ˆlÍaK齚:óe!N‰þ¹f^Íp)⥑Xd1ÄÇ|1‚Þò¥ˆ|è!£ ?PôôDŒˆJ×ùÝ»ÎMo]뺟÷ìÜó;Ÿû=÷ü~Ü(`Õz¦ à!â „$-B‰„lí “>#MÅ™è~Ýœm:3TB‚ƒ,è™CûŽQÀG6&£Là
žjöK'ÏRÌóQn•ÓEr„T¢õ“Þ^\à˜à·B€‚%
wôõŒŽ–¿·Â«é…¡8ìöOCwKºž
èÆhT;
OŽ*÷ÊsÛ‹ÖÊ}§Äð£pnüüeãb#dTqÿÇV»…AVÑÑoU¡ã§67*Tè8®MG×f:~iÑáUõS»q³š¾ZÔ¦£]M_µé8¦¯–´éx¬¦¯NÈ%’¿ÔX‘&òŠúø§%3ä39§›!{i‹î yM3jµ²3jWcGdöÄ2ö<Ù·!;wÿ¾¿ùÓý£#šÑÙPèZ×çéßܽE(ÌÏh_¾R\.—”½î…qýò·Û-e¯¥y2)æéºÜZt©©…9Mâ¹=ËÃ쥮›Åô™ºLŠùâÎc\'{†qEèûoseÊíДbeþ[1\Î2ÚÄ$›âkb)ß[Q²ñ7Pþޏ‹¥ÞÛÚ¶3†€¿uÆê9ãííEzNÖ÷uJÍ¡n)¥bnß•²dJÅú¾³=Ò¿¥‚¿Õî;?8+UÕøb
5Þæ¸Å| èmþºÅ†v…Ùq_|kfß¼ï}o~v hØS
€,°X)!eDh©T’Ñ1r°<¦§ªëV¢£-Fè‚7ˆ8²‚xë¢à;úח৯3×"6½h¹?ÊQÝ Ö…è}üó§<D)»˜˜Ø²è|3,?ù<ù«Íùer³ãÊ)$Z£"8®yÀTF‰•û> ÛË÷¸I÷ª¾o¼ßü‹czÇÉöâÙ-~…ƒì¢#fi@Çëft¤5k¤gšÑ‘ÖXYµætÜod=üÍéXël@Ç›ýéhÃ~OˆEöTJá^¤2² ºgUÆòdEPâ¹õªñ'ER¶‘Ȥ-ˆ…ãuâ¡Íí•xøHÖ™unÓ-S¸<š1hŽKÕNÁZáâ?ÙŸuÊÍ;xÆ
˜ƒóLE*{ž¼¤µìdŸJÅ
{Vï9 Ÿçd¬
¼êo’±ª÷Ïܤ€´Ê¾µ®2•K$³Z…«§õ÷®4ÿÞ¼§:]…‹_¶vǘ6O–‡ì¶¶æ=¯WßæÉ|ë?Ö·vo¿CU¯¡Â°º.)ξ
Õ̘±bÁÇ\hâbK,Îi–0+üû$g¨ú©@@ É<§àl4§¢—†—#þðx$&¡veL¬»IJ\OF#IþL_Ðæ½‘N†ÁmÝ}Þœ§Ïí/ŠÆÓ!·ëð!ÄF7½Å#ÅÜ`‘hâ]Î[ì
sòÈö7‡¸{Cž·È·Ñ@0i„bÁÔÌ
93:ŽôJFg½ˆ)Sð9lf²Ixèç\à¢plj¸zîí`ç§…ÂÂ.LóëaÎÜãØ‡+œUãŠÏ¥3~>7¹ÃY ꢿ™ÿ‡k^ªÿüoD¹Œª·¨ZÔó¡ìmZåѼl«Ô#eRéH÷-îc~uÃ]Ù÷ùñ“¹<ŸUΓçÿñ<àò`!ðÖµÃK
l\7"Iþ“Ôq"À @Ä2¨"¤þxÚVMhA~3³ mÒš¿ÿŠ®E=¤‰¦¢¨…`c»(B%4)RCªQ[Z+i¥–F”*"Œ'¯zðç U<õ¦'‚ñ"Š
"kŠÆ÷v³»éÚht3Éfß¾™ù¾÷½7"à ‹6^œ±²Åx©TÒ¬MleÙç寏&Þíz*‡ÐÚèöA”h0ô=OѾ×yࣄ³Ê£š /;y"=}* 3Bi$a:Kšgœ±ª¹Mu8lp\s+ꥤǀ¥mž-_fçcÿ©Íoòá(ƒ)üÞbŸØ~7ýZÙTÀ£¥°ÉdÄØŸº÷P+r¹ª—¶ÅÕŸzU±:¼| û>²ëÅûà?VÔPÊàXÅ[—¨(û~8W£š’ŽhåÞ°Õ»8‚ލUÓ³««õͳc¡%Ö¬=ݵd`ñGãsÇÅ·•ë—mD<>÷STÖÒºXa<¾OA§$:ÇŒpã30p˜»¸Xoª/½
÷âÃ'££»³ÃGzÆæ’Ùã¹ ¸ì+% Êš®žñÓùá\ž:! õ¥eåÌd>AhX·Y)önN$U¿oO&‘ü²v
Ú¾¨ŠºA-îÎ å÷õШ¨áÌ^µ¨yºñ~n/‰p¦7£¨ôMøš&“ql¨ˆa¶hóPŠ/(øÈÉÃ¥‹Ä‡Ù¹ûñùRâ.wâól„œ¸¢¨ø¼‚¾0æÇc‹UvJ—: Cë†ë38öúY(
:Ú˜á Ď9‚íѺ€#Ž
œÐøl’fæ+àí©ªƒjÖÙ™NØú6nŒfÔ§^A-ÚðDï¼=5=1™ jAXW4(Â\¯Ëó…YßB›ÿP5Qö`!ðâx‰–(öoþ¾°Qȧ+à¢ÀÀ@C°þxÚµUÍoQŸ÷–¥í‚aù:‰RŒ 1ñ&‰V¹`PhH½ª«’ða
IiÄ6%F˜Ô4<ž&8PGÿR?ÒxjÌÞŒâ¼åS¬¥JÜìÛ7ïͼùÍüvv–ÀwŽ Ðvñ8(!‰ÐV«¥JÇÈþΞŽvíô´Af3JGµ°A‹CDÜi üGÕ<¡ëXé!œ,\•®ÉÕËóG™d¡Û䱡ô>úþAç…`xb´”™Ï¥BV!zò½ ^<þ\ÜÀa÷nãÖËk4t£5fÇP,–Ú±2ßÙÉQ¾_Y„?û&Àæíß0–0êº=ÄÛ-þ6Ù%7¦=äñrœ<,DË·1-èc°2c©Œœ·Ÿ•‹öó¹L2;2¡‡Á^´Ó9/ÔIå0}NÇCégò+Š×ÛGi»\¥òcÜ\öõPØNÙ[ö®rï´«p]¬Ó0ŒEþ1#±‡¥Å!ÍEñ~J<ô––=»ˆÒœØÃኋßß4ýå›r¹9üÂïÀápͽ~°9ºæô=l;àóùâUî¸f§C~2Áp5rªæ'QZ`!𾸿ÚkkçSxÖ9€»x€'Àx;=ðèŒþxÚµWMLA~³³-¥éT!òSH„¤M¥!ñF#ª¬
"©E«4áÇP6€ B8CLôd< ‰c¢˜x䌉šh!Þ0¦ê›Ý¶Û–¿•ÅißìÛ7oß÷¾·3Ó)\Z£ààl*Ž„F¸x<.h§Ia¦ã’~znU5Y™‡Z…ÚEgÎà#ZVQ_F©èAg]ÂKÞÀPOkäv –°(¹,Ç´|î¹BŠPûÉ=ù½Á``‘¥B0=£/Ò×=ÐPgÑN<þl†7O·FÞ¢X_GB†›ó<::ÐAµ„ÇF#b®,v©æ Ø%mÛÞ± °ë·ãi.Œü'÷Ë_Ä ûðˆ›d𸤌‡×"ƒÇ=e<E2x´+ã1Q*ƒÇ”2‹2x\VÂc“¿&ç}D•ðØäÏËàÑ¡„‡•¼æEŒò8Hlû1¶†ú‚aëÅàˆµe /Ð c)f±aÛÈõk«µ+DĪâ–+Ã’øhSXl³r:%
ÿ¾ð¨eVÍæLb¬‘*bLþQÊ$/…¡AsŠŸiÚ¥ž¦P^ q_ñÊp%n™dˆI”5r²QÈ!Ù¦Pô(ž_êû’|!ÍjÖßžŠkz‰é…|e9HLõ©(Ë¡Å×¹NÖÓ
Nì‚”½Ê®þøø¯«¬Û™Ä°’¹œ]ædön1»7Æ^«Ìî°;2W™†^”™‡=mÞ>Rí2²¹vÉájNaä ¸.гŸ«£ô“ºŸ¾SK6çeÎ6»ëYPv¾a'bš<´µ™¨Š€Š4ø¼gpm´‡úݽ½upèzýÀ`SàV0&Uö0ÑDö&UýÀð`(8ÈÁÄ{[ž;CƒÌVSVåYh¨r7ÅŒ†ó~wÓ÷ÒÔ-7Ä<±S±…:?jFC=»,xb6clA°Ôâu¢·Íßà÷ÄØ×mÐ,á°!#‚u¡ ÔFËwD=hâ¨PÜhvScLó¡_Ntš²a5´?ã³ÎôA~Æva–FÑwi˜Ñ\î8’àggpÁ3+8…“ì)BÛ9þ+—£ÛÉNˆÿPµ}øŽOtT5ìžÛÎbЂð÷_Òî£)kÒIçÅ
;´QX}+œå¾Hx(ØólͲßÉ2˜K>[fÈÞO¨0ò€Mp›`!ðp©RØýè™Fö ˜ËgÍm¬ö`@¸Õø|>þxÚSÍkAÿÍìnj“ÈnE„¨i@ͱVðTÙ&‹½Db>zIW»j$i$‰¤APiAÄKQŒ„1ŠÐHóð͘
ü pÏ*ˆ¢Ù»W<°€’eš“è·aÊQBû<>rŽƒ—ÌZµÑ²º±ëV?Vn·ÌU¼ûÿ‘fìònÿ]äμLf²ö“¼âw€TêâÔ6s£¿fºÏþô×ÿEgò;y©YDìÄ\2‘Ä2~òÇx$CçËa2ûG6n>æÔÔÍç£YY¢¯vŸÆ)EãoøaÆ5vC&2V[í&p&â¾úþ+Ãã…&›Î¤·¤2ÿDì6½»¼ÁÆwY«LaPX¡R¬^"7«z³¹`v·óí«dÞµº)“¬C’wª’o?ì4¬ŽØDH.VcÆZ¯c"Œc3³Æ°0«—lM½V×K{çÎ>©ê°
û¼=\¨ÒÔ¼CÃNÕí¡£É‘|²H@OÕuÿ®•ƒqTF|%8œýTcyW|ËÖ
TƱQ—Ÿe‘%¸g-‰
7ŽõÙúÉ"4¤z>'<ÂñŒç±ž„·óGßškì¾ñšÜö„×E¦œÕ¶ó‰C¼2èö¬æÅý‰ÎŸÁ‹±v¾†1ÙE=üвÊñ`!ð¸.‚M¸D†XnV$‰Ø'¨Þ(ݱ °~Xر9†þxÚ¥šMlEÇg¿?j'-%ŠZ¥$†Xn'±ˆU*5‘v 2âÀ!M6U¤$FIJ›µV=ôD{÷¡ò¡^–àÀ ®ÔB¢‡ö‚"Õ‡ŠKAav¼Nffw=;ÛHµ×Þ÷Þüßß?¿+¥ö"8¼?tÎêýà°þTüúƒÚÖJè«„é(€àx/
_A F
êÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò/È0ÒÕL·DTimes New Romant©t©Ð,’ü–¾0ü–Õ¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€lðdðX$йQ
‹!¢
%
-
/3476:;>@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüVð$ÿ2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4@d@dU’—¾0ýÿÿ¦ÿÿÿpûppû@<�ý4dddd@—¡k0t©¬,’<�ý4BdBd@—¡k0t©¬,’H<�ý4!d!d@—¡k0t©¬,’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðpóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡óC%Ÿ¨The measurement of eligibility¡óG)ŸªóD&Ÿ¨The measurement of eligibility¡ó$ŸªóH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.ŸªóS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êø ï 0`ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²`ð ÿÿÿÿÿÿÿ™ÿÿÿ–––`ð ÿÿÌff3€€3™3€3ÌÿÌf`ð ÿÿÿ333ÝÝÝ€€€MMMêêê`ð ÿÿÿ€€€ÿÌfÿÌÌÀÀÀ`ð ÿÿÿ€€€ÀÀÀfÿÿ™`ð ÿÿÿ€€€3™ÿ™ÿÌÌ̲²²£>ÿý?" dd@ÿÿïÿÿÿÿÿÿ,£|ÿý?" ddØ@ÿÿïÿÿÿÿÿÿ € Ô €" Ð@€ ð`€»€ £nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€P£R @ ` €`£p£>€£>IðAððÙð( ðõõõõõõõõõõõõõõõõ
ððâ
ð
“ð6€À€’‡ƒ¿Àÿ ð€°ÐPðÃ’
ðdŸ¨,Fare clic per modificare lo stile del titolo¢-ª-ð=
ð
ƒð0€Èƒ’ƒ¿Àÿ ðà°ÐðÃ’
ðÅŸ¨uFare clic per modificare gli stili del testo dello schema
Secondo livello
Terzo livello
Quarto livello
Quinto livello¢:ªvðÊ
ð
ƒð0€ìŠ’ƒ¿Àÿ ð`°`€ðÃ’
ðRŸ *¡øªðÌ
ð
ƒð0€ ’ƒ¿Àÿ ð`°Ð€ðà ’
ðTŸ *¡úªðÌ
ð
ƒð0€Ô”’ƒ¿Àÿ ð` ЀðÃ’
ðTŸ *¡ØªðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²² º*Struttura predefinitað1ñ€
0±ð©pðxðAð( ð
ðxðÌ
ðx
ƒð0€Ô$´ƒ¿Àÿ ð’BðÃ
´
ðTŸ *¡ùªðÎ
ðx
ƒð0€X+´ƒ¿Àÿ ðå wBðô
ðVŸ *¡øªðd
ðx
cð$‡¿ÿ ?ðäqUðôð=
ðx
ƒð0€€0´ƒ¿Àÿ ðö¿¹Kðô
ðÅŸ¨uFare clic per modificare gli stili del testo dello schema
Secondo livello
Terzo livello
Quarto livello
Quinto livello¢:ªvðÒ
ðx
“ð6€Ì8´‡ƒ¿Àÿ ðì’.ðà ´
ðTŸ *¡úªðÔ
ðx
“ð6€´9´‡ƒ¿Àÿ ðìå w.ðô
ðVŸ *¡ØªðH
ðxƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐ0¤FÉXèðàpðäðxð( ð
ðäð
ðä
ÓðN€t´ºr‚]¹ƒºr„]¹¿ƒ¿Àÿ ð’BðÃ
ðpŸ *¡ùª¦ñV++VV¬¬ð
ðä
ÓðN€øÐºr‚]¹ƒºr„]¹¿ƒ¿Àÿ ðå wBðÃ
ðrŸ *¡øª¦ñV++VV¬¬ð
ðä
ãðT€ÀÒºr‚]¹ƒºr„]¹‡¿ƒ¿Àÿ ðì’.ðÃ
ðpŸ *¡úª¦ñV++VV¬¬ð
ðä
ãðT€Üäºr‚]¹ƒºr„]¹‡¿ƒ¿Àÿ ðìå w.ðÃ
ðrŸ *¡Øª¦ñV++VV¬¬ðH
ðäƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.0•Æ@ît=î)ï€0@ð80ð ðÂð( ð
ð ðx
ð cð$€Í¬¿ÿˆð§ÜÑ»ðì
ðžðx
ð cð$€Àͬ¿ÿˆðc
t4³ðì
ðžðp²
ð
cðH„…AÁ$¿ÿ TONDO Negativo 32ðIqŽiðR
ð
sð*…‡Á'1¿Àÿðü—ðp²
ð
cðH„…AÁ$¿ÿ TONDO Negativo 32ðgjð@²
ð
CðA¿ÿð9Ê‘ðV
ð ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?"ñ¿`ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.AÃÅ@jëè+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îIï
€0`ðX0ðððð( ð
ððx
ð cð$€0I´¿ÿð¯ÏÐðÃ
´
ðžðx
ð cð$€tK´¿ÿð<<ðô
ðžðp²
ð
cðH„…AÁ$¿ÿ TONDO Negativo 32ð9<ð@²
ð
CðA¿ÿðI€7ðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îUï
€0lðd ðdðüð( ð
ðdð~
ðd sð*€DZ´¿ÿˆð¯ÏÐðÃ
´
ðžð~
ðd sð*€Ìd´¿ÿˆð<<ðô
ðžðp²
ðd
cðH„…AÁ$¿ÿ TONDO Negativo 32ð9<ð@²
ðd
CðA¿ÿðI€7ðH
ðdƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îUï
€0lðd0ðhðüð( ð
ðhð~
ðh sð*€Xv´¿ÿˆð¯ÏÐðÃ
´
ðžð~
ðh sð*€0w´¿ÿˆð<<ðô
ðžðp²
ðh
cðH„…AÁ$¿ÿ TONDO Negativo 32ð9<ð@²
ðh
CðA¿ÿðI€7ðH
ðhƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î}ï
€0”ðŒ0ðØð$ð( ð
ðØðr
ðØ Sð€øV´¿ÿðÿ¯ÏÏðÃ
´
ðžðr
ðØ Sð€\„´¿ÿð¯Y´ðô
ðžðH
ð؃ð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.•Æ0 õ+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î§ï
€0¾ð¶@ðÜðNð( ð
ðÜðx
ðÜ cð$€<ž´¿ÿˆð¯Ï<ðô
ðžð–
ðÜ
³ðB€Ÿ´‡ƒ¿Àÿ ˆðÿ¯ÏÏðÃ
´
ðžðH
ð܃ð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.•Æ0 õ+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î§ï
€0¾ð¶ð`ðNð( ð
ð`ðx
ð` cð$€±´¿ÿˆð¯Ï,ðô
ðžð–
ð`
³ðB€\±´‡ƒ¿Àÿ ˆðÿ¯ÏÏðÃ
´
ðžðH
ð`ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.•Æ0 õ+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€0¬ð¤Àð8ð<ð( ð
ð8ð~
ð8 sð*€ÄÅ´¿ÿˆðүϢðÃ
´
ðžð~
ð8 sð*€ðÆ´¿ÿˆð§¯†Iðô
ðžðH
ð8ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€0¬ð¤Ðð<�ð<ð( ð
ð<�ð~
ð<� sð*€hÛ´¿ÿˆðүϢðÃ
´
ðžð~
ð<� sð*€”Ü´¿ÿˆð§¯†þðô
ðžðH
ð<�ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€ 0¬ð¤àð@ð<ð( ð
ð@ð~
ð@ sð*€Œú´¿ÿˆðүϢðÃ
´
ðžð~
ð@ sð*€èú´¿ÿˆð§ž´;ðô
ðžðH
ð@ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î+ï
€
0Bð: ððÒð( ð
ðð~
ð sð*€¤?´¿ÿˆðүϢðÃ
´
ðžð
ð sð*€¨:¿ÿˆð§',;ðô
ðž¦
(ÓCðº²
ð0
ð`A ?ÿÿÿ‚ƒÿÿÿ„¿Àÿ €€€?ˆ"ñ¿`ð}¯ÎÄ ðÁëðº²
ð0
ð`A
¦?€ÿÿÿ‚„¿Àÿ €€€?ˆ"ñ¿`ð)®i.ðÁ¦Ã«ðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îï
€0.ð& ð Pð¾ð( ð
ðPð²
ðP “ð6€Œ*:‚„¿ÿˆ"ñ¿`ð¦&‡ýðë
ð&ž¦x
V{|ðº²
ðP0
ð`A©?ÿÿÿ‚ƒÿÿÿ„¿Àÿ €€€?ˆ"ñ¿`ð}hîðÁ©Ã«ðœ
ðP
ÃðH€ü«‡ƒ¿Àÿ ˆðүϢðÃ
«
ðžðf
ð P
ƒð0…‡¿ÀÿË8cÿ"ñ¿`ð"ßðH
ðPƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îï
€0.ð&@ð
Xð¾ð( ð
ðXð²
ðX “ð6€l@:‚„¿ÿˆ"ñ¿`ð&‡²ðë
ð&ž¦xs
V{|ðº²
ðX0
ð`An?ÿÿÿ‚ƒÿÿÿ„¿Àÿ €€€?ˆ"ñ¿`ð¯<ÕðÁnëðœ
ð X
ÃðH€P¡«‡ƒ¿Àÿ ˆðүϢðÃ
«
ðžðf
ð
X
ƒð0…‡¿ÀÿË8cÿ"ñ¿`ðä‚‚ºðH
ðXƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î‰ï
€
0 ð˜@ðlð0ð( ð
ðlðx
ðl cð$€@™«¿ÿˆð€°ÐPðÃ
«
ðžðx
ðl cð$€4{«¿ÿˆðÕT+†ðë
ðžðH
ðlƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.ÀjÆÀ½W7+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î‰ï
€0 ð˜Pðpð0ð( ð
ðpðx
ðp cð$€hZ:¿ÿˆð€°ÐPðÃ
«
ðžðx
ðp cð$€”o:¿ÿˆðà°ÐðÃ:
ðžðH
ðpƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.ÂjÆêfõ+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îƒï
€0šð’`ðtð*ð( ð
ðtð~
ðt sð*€´¸¬¿ÿˆð¤¯ÏtðÃ
¬
ðžðl
ðt
ƒð0€$¿¬ƒ¿Àÿ ðMTÑi
ðŸ pWe use data from the Bank of Italy Survey oh Household Income and Wealth - SHIW. This is a survey of repeated cross sections running since 1987 to 2004. It contains a panel component, that is only exploited for consistency checks .
We focus the attention on waves 1993 to 2004.
Consumption is based on retrospective questions on
Food at home plus meals regularly consumed out of the home (food)
Total spending, net of rent and key durable goods purchases (non-durable consumption)
Retirement is based on the answer to two questions: if the person reports that he was not working for the most part of the year, and then that he was a job-pensioner , he is considered to be retired from work. ¡lLZ™ZÔZL<�ÿ3þ@ÿ3þÔª¹ ðH
ðtƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î£ï
€0ºð² ðüðJð( ð
ðüð~
ðü sð*€ˆ:¿ÿˆðÿ¯ÏÏðÃ
:
ðžðŒ
ðü
ƒð0€xµ:ƒ¿Àÿ ðÕT´þ
ð,Ÿ¨ÎThe eligibility variable S* has been derived from SHIW data for the period 1993-2002 using self-reported information on age, gender, seniority (i.e. accrued years of contributions), retirement status and age at retirement.
In the two-dimensional space defined by seniority and age we calculated for all individuals in the sample the distance from eligibility accounting for changes in the eligibility rules introduced by reforms over time (by gender and separately for private sector, public sector and self-employed).
We use observations referring to household heads within a 10-year band to/from eligibility. Observations on subjects at S*=0 are dropped because their retirement status is not uniquely identified.
¡ÏZ
]ÿ3þÿ3þ ÿ3þ(ÿ3þÿ3þ Rÿ3þ
MªÏ ¦xOtuðH
ðüƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îï
€0.ð&àð
ð¾ð( ð
ðð†
ð
Sð€ ˜:¿ÿðàpÐðì
𠟪ðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îÃï
€0ÚðÒ°ððjð( ð
ððŽ
ð
ƒð0€Ør:ƒ¿Àÿ ðÕT´i
ð.Ÿ¨~For retired individuals: time elapsed since eligibility has been calculated using the rule operating at the time they retired (basically using information on age at retirement).
For workers: time to eligibility has been calculated using the rule operating at the time they are interviewed.
Accrued years of contributions have been imputed, when missing, either by a consistency check exploiting the panel dimension of the data or by using self-reported age of entry in the labour market.
In 1993 we dropped all non-panel observations, because of missing information on both contributions and age of labour market entry (for the retired) ¡fZÿ3þŸÿ3þ²ÿ3þÿª ¦xOtuðœ
ð
ÃðH€Ò:‡ƒ¿Àÿ ˆðÿ¯ÏÏðÃ
:
ðžðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îï
€0¤ðœ ð
pð4ð( ð
ðpð®²
ð p
ð`A‚ƒ„†Á¿ÀÅÁÿ ?ˆ"ñ¿`ðh~ßðìðŒ¢
ðp
£ð<�€ë:…‡¿ƒ¿ÀÿðL@ ´ l
𠟪ð²¢
ð
p
ƒð0€$í:¿ƒ¿Àÿðj‡cŠ
ðRŸ¨distance to/from eligibility¡ 2™þðH
ðpƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î
ï€0!ððð±ð( ð
ðð¨²
ð
óðZA‚ƒ„†Á¿ÀÅÁÿ ˆ"ñ¿`ðj€àðìðÉ¢
ð
ƒð0€¬ø:¿ƒ¿ÀÿðjZ6ã
ðiŸ¨1distance to/from eligibility
by retirement status¡2(22™þðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îáï
€0øððPðŠ\ðˆð( ð
ð\ð¬²
ð\0
ð`Aš?ÿÿÿƒÿÿÿ¿Àÿ €€€?ˆð4ÿ€àðÁšÃðœ
ðŠ\
ÃðH€˜‡ƒ¿Àÿ ˆðÿ¯ÏÏðÃ
ðžðH
ð\ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€0¬ð¤`ð`ð<ð( ð
ð`ð~
ð` sð*€ ¿ÿˆðүϢðÃ
ðžð~
ð` sð*€,¿ÿˆðz'´þðÃ
ðžðH
ð`ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î=ï
€0TðL€ðhðäð( ð
ðhð~
ðh sð*€ä#¿ÿˆðүϢðÃ
ðžð~
ðh sð*€%¿ÿˆðž,<ðÃ
ðžð ²
ðh0
ãðTA¬?ÿÿÿƒÿÿÿ¿Àÿ €€€?ˆðFŒ™™ðÁ¬ÃðH
ðhƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îíï
€0ðüàð
€ð”ð( ð
ð€ð~
ð€ sð*€¸8¿ÿˆðүϢðÃ
ðžð’
ð€ sð*€,E¿ÿˆð§'z åðÃ
𠞦ð ²
ð€0
ãðTA}?ÿÿÿƒÿÿÿ¿Àÿ €€€?ˆð·ü¡çðÁ}Ãð~
ð€
ƒð0€Uƒ¿Àÿ ð2'´
ðŸ¨\Identification result: if the two groups Z=0 and Z=1 are not systematically different with respect to (Y,S*,U), the following ratio correctly identifies the parameter of interest
As an implication, under the assumptions made on the measurement error, the IV estimator obtained by instrumenting R by 1(S>0) recovers the causal effect of interest.¡t]9.
2ÿ3þ{ÿ3þ)ª] ¦ø=‰>®?¯@°ð ²
ð €0
ãðTA
®?ÿÿÿƒÿÿÿ¿Àÿ €€€?ˆð6
"ªfðÁ®Ãðf
ð
€
ƒð0…‡¿ÀÿË8cÿ"ñ¿`ð
)6±ðH
ð€ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îüï
€0ðPð(ð£ð( ð
ð(ð~
ð( sð*€¼]¿ÿˆðw¯ÏGðÃ
ðžðå
ð(
ƒð0€|cƒ¿Àÿ ðâTIY
ð…Ÿ¨1
Select couples and single males, set the household head to the male and define retired households as those whose male head is retired (we do not consider retirement of the spouse at this stage).
Use observations for heads within a 10-year band to/from eligibility. Observations on households at S=0 are not used in the estimation because their eligibility status can not be uniquely identified.
Take averages of household consumption on non-durables from SHIW and proportions of retired heads by S (120 cells from -10 to 10, excluding 0) and by year.
Get IV estimates instrumenting retirement with eligibility status, the latter being defined as 1(S>0). Pool different waves adding time dummies and use polynomials in S throughout. Adjust standard errors for clustering and to account for differences in cell size. ¡$Z1Z2ª2 ðH
ð(ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î†ï
€#0öðî°ðð†ð( ð
ððr
ð Sð€|RS
¿ÿðүϢðÃ
S
ðžðr
ð Sð€ÜUS
¿ÿðà°ÐðÃS
ðžðZ²
ð
Cð2€€AÁfirst_stagecðMâÉðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ8Š0º___PPT10‹ë.ªvÇ •âîƒï
€0šð’Ðð Àð*ð( ð
ðÀð®²
ðÀ
ãð`„…AÁÿÿÿ‚ƒÿÿÿ„¿Àÿ€€€den10"ñ¿`ðÒ€ªðÃð˜
ðÀ “ð6€y€‚„¿ÿ"ñ¿`ðÒdâ¢ðÃ
ðžðœ¢
ðÀ
ƒð0€œ|¿ƒ¿Àÿð*j½
ð<�Ÿ¡ 2ªðH
ðÀƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.¥jÆÀIÓ+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îýï
€0ððð
Èð¤ð( ð
ðÈð®²
ðÈ
ãð`„…AÁÿÿÿ‚ƒÿÿÿ„¿Àÿ€€€num10"ñ¿`ðÒ€ŒðÃð¶
ð
È
ãðT€ Ї€‚ƒ„¿Àÿ ˆ"ñ¿`ðÒd¢ðÃ
ðžðH
ðȃð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.¥jÆ-Û=+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î±ï
€0ÈðÀð#¡ŒðXð( ð
ðŒððˆ ðGmÿV
ðŸŒð#"ñ"Ÿ ú»ººðm¿wVðÃðß
ðŒ
óðZ€Ô˜_‚жƒ_„ж‡¿ƒ¿Àÿ?ðšœ
ÿV
ðMŸ¨0.059¡¦ø @`€ðß
ðŒ
óðZ€,¨_‚жƒ_„ж‡¿ƒ¿Àÿ?ð œ
šV
ðMŸ¨-1.91¡¦ø @`€ðà
ðŒ
óðZ€°_‚жƒ_„ж‡¿ƒ¿Àÿ?ðHœ
V
ðNŸ¨0.0001¡¦ø @`€ðá
ðŒ
óðZ€˜¸_‚жƒ_„ж‡¿ƒ¿Àÿ?ðbœ
HV
ðOŸ¨-0.0003¡¦ø @`€ðõ
ðŒ
óðZ€ÐÂ_‚жƒ_„ж‡¿ƒ¿Àÿ?ðGœ
bV
ðcŸ¨S2 ¡.
¦ø @`€ðß
ðŒ
óðZ€hË_‚жƒ_„ж‡¿ƒ¿Àÿ?ðšâÿœ
ðMŸ¨0.043¡¦ø @`€ðß
ðŒ
óðZ€\Ô_‚жƒ_„ж‡¿ƒ¿Àÿ?ð âšœ
ðMŸ¨-2.05¡¦ø @`€ðà
ðŒ
óðZ€\Ö_‚жƒ_„ж‡¿ƒ¿Àÿ?ðHâ œ
ðNŸ¨0.0027¡¦ø @`€ðá
ðŒ
óðZ€Èå_‚жƒ_„ж‡¿ƒ¿Àÿ?ðbâHœ
ðOŸ¨-0.0055¡¦ø @`€ðé
ðŒ
óðZ€´ï_‚жƒ_„ж‡¿ƒ¿Àÿ?ðGâbœ
ðWŸ¨S¡$
çÿ¦ø @`€ðÙ
ðŒ
ãðT€¸ø_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðš'ÿâ
ðMŸ¨0.085¡¦ø @`€ðÙ
ðŒ
ãðT€„_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ð 'šâ
ðMŸ¨-1.74¡¦ø @`€ðÚ
ðŒ
ãðT€Ô_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðH' â
ðNŸ¨0.0567¡¦ø @`€ðÛ
ðŒ
ãðT€è_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðb'Hâ
ðOŸ¨-0.0983¡¦ø @`€ðà
ðŒ
ãðT€à_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðG'bâ
ðTŸ¨
Retirement¡¦ø @`€ðÅ
ð
Œ
£ð<�€à$¿ƒ¿Àÿ?ðšmÿ'
ðQŸ¨p-value¡¦ø @`€ðÄ
ðŒ
£ð<�€0.¿ƒ¿Àÿ?ð mš'
ðPŸ¨t-stat¡¦ø @`€ðÇ
ðŒ
£ð<�€x¿ƒ¿Àÿ?ðHm '
ðSŸ¨ Std. Err.¡
¦ø @`€ðÞ
ð
Œ
£ð<�€`@¿ƒ¿Àÿ?ðbmH'
ðjŸ¨Coeff.¡ª¦ø @`€ðÎ
ð Œ
£ð<�€Ì:¿ƒ¿Àÿ?ðGmb'
ðZŸ¡ÿ3þª¦ø @`€ð`B
ðOŒ
ƒð0¿ÀËŸo×ÿ
?¿ðGmÿmðZB
ðQŒ
sð*¿ÀËœ1ÿ
?¿ðG'ÿ'ðZB
ðRŒ
sð*¿ÀËœ1ÿ
?¿ðGâÿâðZB
ðSŒ
sð*¿ÀËœ1ÿ
?¿ðGœ
ÿœ
ð`B
ð^Œ
ƒð0¿ÀËŸo×ÿ
?¿ðGVÿVð`B
ð_Œ
ƒð0¿ÀËŸo×ÿ
?¿ðGmGVðZB
ð`Œ
sð*¿ÀËœ1ÿ
?¿ðbmbVðZB
ðaŒ
sð*¿ÀËœ1ÿ
?¿ðHmHVðZB
ðbŒ
sð*¿ÀËœ1ÿ
?¿ð m VðZB
ðcŒ
sð*¿ÀËœ1ÿ
?¿ðšmšVð`B
ðdŒ
ƒð0¿ÀËŸo×ÿ
?¿ðÿmÿVðœ
ðŒ
ÃðH€HM‡ƒ¿Àÿ ˆðw ÏGðÃ
ðžð×¢
ð Œ
ƒð0€€N¿ƒ¿Àÿð/¿IO
ðwŸ¨5IV estimates using logged expenditure on non-durables¡&6 2)ÿ3þ
ÿ3þðH
ðŒƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î±ï
€0ÈðÀð##\ðXð( ð
ð\ð¥ðŽ ðGmÿV
ð\#ðˆ#"ñ"Ÿ ú»ººðm¿wVðÃðß
ð\
óðZ€¤o_‚жƒ_„ж‡¿ƒ¿Àÿ?ðšœ
ÿV
ðMŸ¨0.561¡¦ø @`€ðß
ð\
óðZ€40_‚жƒ_„ж‡¿ƒ¿Àÿ?ð œ
šV
ðMŸ¨-0.58¡¦ø @`€ðá
ð\
óðZ€lz_‚жƒ_„ж‡¿ƒ¿Àÿ?ðHœ
V
ðOŸ¨0.00014¡¦ø @`€ðâ
ð\
óðZ€ƒ_‚жƒ_„ж‡¿ƒ¿Àÿ?ðbœ
HV
ðPŸ¨-0.00008¡ ¦ø @`€ðõ
ð\
óðZ€Œ_‚жƒ_„ж‡¿ƒ¿Àÿ?ðGœ
bV
ðcŸ¨S2 ¡.
¦ø @`€ðß
ð\
óðZ€ˆ_‚жƒ_„ж‡¿ƒ¿Àÿ?ðšâÿœ
ðMŸ¨0.287¡¦ø @`€ðß
ð \
óðZ€Ìž_‚жƒ_„ж‡¿ƒ¿Àÿ?ð âšœ
ðMŸ¨-1.07¡¦ø @`€ðà
ð
\
óðZ€(R_‚жƒ_„ж‡¿ƒ¿Àÿ?ðHâ œ
ðNŸ¨0.0026¡¦ø @`€ðá
ð\
óðZ€è§_‚жƒ_„ж‡¿ƒ¿Àÿ?ðbâHœ
ðOŸ¨-0.0028¡¦ø @`€ðé
ð\
óðZ€|¸_‚жƒ_„ж‡¿ƒ¿Àÿ?ðGâbœ
ðWŸ¨S¡$
çÿ¦ø @`€ðÙ
ð
\
ãðT€0²_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðš'ÿâ
ðMŸ¨0.011¡¦ø @`€ðÙ
ð\
ãðT€HÊ_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ð 'šâ
ðMŸ¨-2.59¡¦ø @`€ðÚ
ð\
ãðT€HÌ_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðH' â
ðNŸ¨0.0544¡¦ø @`€ðÛ
ð\
ãðT€´Û_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðb'Hâ
ðOŸ¨-0.1409¡¦ø @`€ðà
ð\
ãðT€PÝ_‚жƒ_„ж‡¿ÿÿ™¿Àÿ?ðG'bâ
ðTŸ¨
Retirement¡¦ø @`€ðÅ
ð\
£ð<�€î¿ƒ¿Àÿ?ðšmÿ'
ðQŸ¨p-value¡¦ø @`€ðÄ
ð\
£ð<�€äö¿ƒ¿Àÿ?ð mš'
ðPŸ¨t-stat¡¦ø @`€ðÇ
ð\
£ð<�€¿ƒ¿Àÿ?ðHm '
ðSŸ¨ Std. Err.¡
¦ø @`€ðÞ
ð\
£ð<�€ ¿ƒ¿Àÿ?ðbmH'
ðjŸ¨Coeff.¡ª¦ø @`€ðÎ
ð\
£ð<�€¿ƒ¿Àÿ?ðGmb'
ðZŸ¡ÿ3þª¦ø @`€ð`B
ð\
ƒð0¿ÀËŸo×ÿ
?¿ðGmÿmðZB
ð\
sð*¿ÀËœ1ÿ
?¿ðG'ÿ'ðZB
ð\
sð*¿ÀËœ1ÿ
?¿ðGâÿâðZB
ð\
sð*¿ÀËœ1ÿ
?¿ðGœ
ÿœ
ð`B
ð\
ƒð0¿ÀËŸo×ÿ
?¿ðGVÿVð`B
ð\
ƒð0¿ÀËŸo×ÿ
?¿ðGmGVðZB
ð\
sð*¿ÀËœ1ÿ
?¿ðbmbVðZB
ð\
sð*¿ÀËœ1ÿ
?¿ðHmHVðZB
ð\
sð*¿ÀËœ1ÿ
?¿ð m VðZB
ð \
sð*¿ÀËœ1ÿ
?¿ðšmšVð`B
ð!\
ƒð0¿ÀËŸo×ÿ
?¿ðÿmÿVðœ
ð"\
ÃðH€¸‡ƒ¿Àÿ ˆðw ÏGðÃ
ðžðÏ¢
ð#\
ƒð0€ð¿ƒ¿Àÿð§²Ç
ðoŸ¨-IV estimates using logged expenditure on food¡&. 2)ÿ3þÿ3þðH
ð\ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€0¬ð¤Pðœð<ð( ð
ðœð~
ðœ sð*€¿ÿˆðүϢðÃ
ðžð~
ðœ sð*€L¿ÿˆðM'YwðÃ
ðžðH
ðœƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€%0¬ð¤ððð<ð( ð
ðð~
ð sð*€èdK
¿ÿˆðүϢðÃ
K
ðžð~
ð sð*€0]¬¿ÿˆðM'YwðÃK
ðžðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€$0¬ð¤Ððð<ð( ð
ðð~
ð sð*€ÜÈS
¿ÿˆðүϢðÃ
S
ðžð~
ð sð*€$¶S
¿ÿˆðM'YwðÃS
ðžðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î•ï
€&0¬ð¤ð ð<ð( ð
ð ð~
ð sð*€tƒ
¿ÿˆðүϢðÃ
S
ðžð~
ð sð*€d¼:¿ÿˆð/'YYðÃS
ðžðH
ð ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +îï
€0Äð¼°ð@ðTð( ð
ð@ð~
ð@ sð*€A¿ÿˆðүϢðÃ
ðžð–
ð@
³ðB€¨Aƒ¿Àÿ ˆðM'´wðÃ
ðžðH
ð@ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ K
ÿÿÿÿ=ñ
@Bñ +î~Sï
€ 0•RðR`ðfˆ-ð%Rð( ð
ð,ðQð” ðqwÑ#
ðˆ-ð#"ñFŸ Ã:
5454554554545ðwùY#ðõ
ðx-
óðZ€äX_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpî¡#
ðUŸ¨0.000¡¦ø @`€ðï
ðv-
óðZ€ph_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpº
¡î
ðOŸ¨0.568¡¦ø @`€ðõ
ðt-
óðZ€xq_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp…¡º
ðUŸ¨0.000¡¦ø @`€ðõ
ðr-
óðZ€¤z_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpQ¡…
ðUŸ¨0.006¡¦ø @`€ðõ
ðp-
óðZ€Œƒ_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp
¡Q
ðUŸ¨0.000¡¦ø @`€ðï
ðn-
óðZ€@Œ_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpç¡
ðOŸ¨0.079¡¦ø @`€ðõ
ðl-
óðZ€¼•_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp³¡ç
ðUŸ¨0.000¡¦ø @`€ðõ
ðj-
óðZ€¤ž_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp~¡³
ðUŸ¨0.000¡¦ø @`€ðõ
ðh-
óðZ€X§_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpI¡~
ðUŸ¨0.015¡¦ø @`€ðõ
ðf-
óðZ€Ô°_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp¡I
ðUŸ¨0.000¡¦ø @`€ðï
ðd-
óðZ€¼¹_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðpà¡
ðOŸ¨0.503¡¦ø @`€ðõ
ðb-
óðZ€pÂ_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ðp¬¡à
ðUŸ¨0.000¡¦ø @`€ðÕ
ð`-
£ð<�€ìË¿ƒ¿ Àÿ?"ñ¿`ðpw¡¬
ðSŸ¨P-value¡¦ø @`€ð÷
ð\-
óðZ€ÔÔ_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@îp#
ðWŸ¨-16.78%¡¦ø @`€ðð
ðZ-
óðZ€ˆÝ_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@º
pî
ðPŸ¨-4.95%¡¦ø @`€ð÷
ðX-
óðZ€@_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@…pº
ðWŸ¨-17.79%¡¦ø @`€ðö
ðV-
óðZ€ðï_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@Qp…
ðVŸ¨-7.28%¡¦ø @`€ð÷
ðT-
óðZ€Èø_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@
pQ
ðWŸ¨-23.66%¡¦ø @`€ðñ
ðR-
óðZ€„ _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@çp
ðQŸ¨-11.47%¡¦ø @`€ð÷
ðP-
óðZ€ü
_‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@³pç
ðWŸ¨-29.25%¡¦ø @`€ð÷
ðN-
óðZ€ _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@~p³
ðWŸ¨-32.83%¡¦ø @`€ð÷
ðL-
óðZ€ _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@Ip~
ðWŸ¨-12.31%¡¦ø @`€ð÷
ðJ-
óðZ€ _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@pI
ðWŸ¨-41.09%¡¦ø @`€ðð
ðH-
óðZ€1 _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@àp
ðPŸ¨-1.32%¡¦ø @`€ð÷
ðF-
óðZ€H9 _‚жƒ_„ж‡¿ƒ¿ Àÿ?"ñ¿`ð@¬pà
ðWŸ¨-15.60%¡¦ø @`€ðÒ
ðD-
£ð<�€èB ¿ƒ¿ Àÿ?"ñ¿`ð@wp¬
ðPŸ¨Drop¡¦ø @`€ðê
ð:-
ãðT€€+ ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4î #
ðPŸ¨11.18%¡¦ø @`€ðé
ð8-
ãðT€œT ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4º
î
ðOŸ¨3.33%¡¦ø @`€ðé
ð6-
ãðT€Ì] ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4… º
ðOŸ¨3.27%¡¦ø @`€ðé
ð4-
ãðT€| ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4Q …
ðOŸ¨7.76%¡¦ø @`€ðê
ð2-
ãðT€o ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4
Q
ðPŸ¨20.80%¡¦ø @`€ðé
ð0-
ãðT€˜x ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4ç
ðOŸ¨2.99%¡¦ø @`€ðê
ð.-
ãðT€ ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4³ ç
ðPŸ¨12.85%¡¦ø @`€ðé
ð,-
ãðT€¨Š ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4~ ³
ðOŸ¨1.57%¡¦ø @`€ðé
ð*-
ãðT€°“ ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4I ~
ðOŸ¨1.45%¡¦ø @`€ðé
ð(-
ãðT€¸œ ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4 I
ðOŸ¨5.62%¡¦ø @`€ðê
ð&-
ãðT€À¥ ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4à
ðPŸ¨29.18%¡¦ø @`€ðð
ð$-
ãðT€® ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4¬ à
ðVŸ¡ª¦ø @`€ðë
ð"-
ãðT€L± ‚ƒ„‡¿ÿÿ™¿Àÿ?"ñ¿`ð4w ¬
ðQŸ¨Share¡¦ø @`€ðâ
ðï,
óðZ€¸À _‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡îÑ#
ðPŸ¨11.02%¡¦ø @`€ðî
ðì,
ãðT€TÊ ‚ƒ„‡¿ÿÿ™¿Àÿ?ð î@#
ðbŸ
173 ¬ ¡&"¦ø @`€ðË
ðë,
³ðB€@Ä ‡¿ƒ¿Àÿ?ðqî4#
ðQŸ¨Other¡ÿ3þ¦ø @`€ðá
ðê,
óðZ€¨Ü _‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡º
Ñî
ðOŸ¨3.75%¡¦ø @`€ðì
ðç,
ãðT€tæ ‚ƒ„‡¿ÿÿ™¿Àÿ?ð º
@î
ð`Ÿ 52 ¬ ¡&"¦ø @`€ðÖ
ðæ,
³ðB€ðï ‡¿ƒ¿Àÿ?ðqº
4î
ð\Ÿ¨Housing Services¡ÿ3þ¦ø @`€ðá
ðå,
óðZ€Tù _‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡…Ѻ
ðOŸ¨3.19%¡¦ø @`€ðì
ðâ,
ãðT€
‚ƒ„‡¿ÿÿ™¿Àÿ?ð …@º
ð`Ÿ 50 ¬ ¡&"¦ø @`€ðÌ
ðá,
³ðB€¬ó ‡¿ƒ¿Àÿ?ðq…4º
ðRŸ¨Phones¡ÿ3þ¦ø @`€ðá
ðà,
óðZ€4
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡QÑ…
ðOŸ¨8.52%¡¦ø @`€ðî
ðÝ,
ãðT€<
‚ƒ„‡¿ÿÿ™¿Àÿ?ð Q@…
ðbŸ
120 ¬ ¡&"¦ø @`€ðÍ
ðÜ,
³ðB€)
‡¿ƒ¿Àÿ?ðqQ4…
ðSŸ¨Heating¡ÿ3þ¦ø @`€ðá
ðÛ,
óðZ€Œ2
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡
ÑQ
ðOŸ¨18.8%¡¦ø @`€ðî
ðØ,
ãðT€<
‚ƒ„‡¿ÿÿ™¿Àÿ?ð
@Q
ðbŸ
321 ¬ ¡&"¦ø @`€ðÏ
ð×,
³ðB€PE
‡¿ƒ¿Àÿ?ðq
4Q
ðUŸ¨ Transport¡
ÿ3þ¦ø @`€ðá
ðÖ,
óðZ€€N
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡çÑ
ðOŸ¨3.13%¡¦ø @`€ðì
ðÓ,
ãðT€X
‚ƒ„‡¿ÿÿ™¿Àÿ?ð ç@
ð`Ÿ 46 ¬ ¡&"¦ø @`€ð×
ðÒ,
³ðB€¤R
‡¿ƒ¿Àÿ?ðqç4
ð]Ÿ¨Personal Services¡ÿ3þ¦ø @`€ðâ
ðÑ,
óðZ€¬j
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡³Ñç
ðPŸ¨10.77%¡¦ø @`€ðî
ðÎ,
ãðT€Ht
‚ƒ„‡¿ÿÿ™¿Àÿ?ð ³@ç
ðbŸ
198 ¬ ¡&"¦ø @`€ðÎ
ðÍ,
³ðB€4n
‡¿ƒ¿Àÿ?ðq³4ç
ðTŸ¨Clothing¡ ÿ3þ¦ø @`€ðá
ðÌ,
óðZ€‡
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡~ѳ
ðOŸ¨1.25%¡¦ø @`€ðì
ðÉ,
ãðT€,
‚ƒ„‡¿ÿÿ™¿Àÿ?ð ~@³
ð`Ÿ 24 ¬ ¡&"¦ø @`€ðÍ
ðÈ,
³ðB€Ä™
‡¿ƒ¿Àÿ?ðq~4³
ðSŸ¨Tobacco¡ÿ3þ¦ø @`€ðá
ðÇ,
óðZ€Ì¢
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡IÑ~
ðOŸ¨1.50%¡¦ø @`€ðì
ðÄ,
ãðT€h¬
‚ƒ„‡¿ÿÿ™¿Àÿ?ð I@~
ð`Ÿ 22 ¬ ¡&"¦ø @`€ðÍ
ðÃ,
³ðB€T¦
‡¿ƒ¿Àÿ?ðqI4~
ðSŸ¨Alcohol¡ÿ3þ¦ø @`€ðá
ðÂ,
óðZ€¼¾
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡ÑI
ðOŸ¨3.92%¡¦ø @`€ðì
ð¿,
ãðT€ˆÈ
‚ƒ„‡¿ÿÿ™¿Àÿ?ð @I
ð`Ÿ 87 ¬ ¡&"¦ø @`€ðÏ
ð¾,
³ðB€ÜÑ
‡¿ƒ¿Àÿ?ðq4I
ðUŸ¨ Meals out¡
ÿ3þ¦ø @`€ðâ
ð½,
óðZ€HÔ
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡àÑ
ðPŸ¨34.12%¡¦ø @`€ðî
ðº,
ãðT€Lä
‚ƒ„‡¿ÿÿ™¿Àÿ?ð à@
ðbŸ
450 ¬ ¡&"¦ø @`€ðÏ
ð¹,
³ðB€ÔÞ
‡¿ƒ¿Àÿ?ðqà4
ðUŸ¨ Food Home¡
ÿ3þ¦ø @`€ðè
ð¸,
óðZ€àö
_‚жƒ_„ж‡¿ƒ¿Àÿ?ð¡¬Ñà
ðVŸ¡ª¦ø @`€ðð
ðµ,
ãðT€„‚ƒ„‡¿ÿÿ™¿Àÿ?ð ¬@à
ðdŸ 1544 ¬ ¡&"¦ø @`€ðÖ
ð´,
³ðB€t‡¿ƒ¿Àÿ?ðq¬4à
ð\Ÿ¨Total Nondurable¡ÿ3þ¦ø @`€ðÅ
ð³,
£ð<�€8¿ƒ¿Àÿ?ð¡wѬ
ðQŸ¨Share¡¦ø @`€ðÜ
ð°,
ãðT€Xû
‚ƒ„‡¿ÿÿ™¿Àÿ?ð w@¬
ðPŸ¨Mean¡¦ø @`€ðÎ
ð¯,
³ðB€<‡¿ƒ¿Àÿ?ðqw4¬
ðTŸ¡ª¦ø @`€ð`B
ðð,
ƒð0¿ÀËŸo×ÿ
?¿ðqwÑwðZB
ðñ,
sð*¿ÀËœ1ÿ
?¿ðq¬Ñ¬ðZB
ðò,
sð*¿ÀËœ1ÿ
?¿ðqàÑàðZB
ðó,
sð*¿ÀËœ1ÿ
?¿ðqÑðZB
ðô,
sð*¿ÀËœ1ÿ
?¿ðqIÑIðZB
ðõ,
sð*¿ÀËœ1ÿ
?¿ðq~Ñ~ðZB
ðö,
sð*¿ÀËœ1ÿ
?¿ðq³Ñ³ðZB
ð÷,
sð*¿ÀËœ1ÿ
?¿ðqçÑçðZB
ðø,
sð*¿ÀËœ1ÿ
?¿ðq
Ñ
ðZB
ðù,
sð*¿ÀËœ1ÿ
?¿ðqQÑQðZB
ðú,
sð*¿ÀËœ1ÿ
?¿ðq…Ñ…ðZB
ðû,
sð*¿ÀËœ1ÿ
?¿ðqº
Ѻ
ðZB
ðü,
sð*¿ÀËœ1ÿ
?¿ðqîÑîð`B
ðý,
ƒð0¿ÀËŸo×ÿ
?¿ðq#Ñ#ð`B
ðþ,
ƒð0¿ÀËŸo×ÿ
?¿ðqwq#ðZB
ðÿ,
sð*¿ÀËœ1ÿ
?¿ð4w4#ðZB
ð-
sð*¿ÀËœ1ÿ
?¿ð@w@#ð`B
ð-
ƒð0¿ÀËŸo×ÿ
?¿ðÑwÑ#ðZB
ð#-
sð*¿ÀËœ1ÿ
?¿ð w #ðZB
ðE-
sð*¿ÀËœ1ÿ
?¿ðpwp#ðZB
ða-
sð*¿ÀËœ1ÿ
?¿ð¡w¡#ðf
ð -
ƒð0…‡¿ÀÿË8cÿ"ñ¿`ð´õ¡òðH
ð,ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ S
ÿÿÿÿ=ñ
@Bñ +î³ï
€!0ÊðÂÐðHðZð( ð
ðHð~
ðH sð*€`¿ÿˆð§q€†ðÃ
ðžðœ
ðH
ÃðH€\A‡ƒ¿Àÿ ˆðүϢðÃ
ðžðH
ðHƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ S
ÿÿÿÿ=ñ
@Bñ +î•ï
€"0¬ð¤àðLð<ð( ð
ðLð~
ðL sð*€ì`¿ÿˆð€°ÐPðÃ
ðžð~
ðL sð*€b¿ÿˆð/¯£OðÃ
ðžðH
ðLƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ S
ÿÿÿÿ=ñ
@Bñ +ðñ,
0ðˆ€ð|ð ð( ð
ð|ðX
ð| Cð¿ÿxðäqUðôðˆ
ð| Sð€G´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð|ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇXFðñ
0ðˆð€ð ð( ð
ð€ðX
ð€ Cð¿ÿxðäqUðôðˆ
ð€ Sð€|^´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð€ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ0ß®Fðñ5
0ðˆ ð„ð ð( ð
ð„ðX
ð„ Cð¿ÿxðäqUðôðˆ
ð„ Sð€to´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð„ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ0ß®Fðñ6
0ðˆ°ðˆð ð( ð
ðˆðX
ðˆ Cð¿ÿxðäqUðôðˆ
ðˆ Sð€}´¿ÿxðö¿¹Kðô
ð"ŸªðH
ðˆƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐe°Fðñ!
0ðˆÀðŒð ð( ð
ðŒðX
ðŒ Cð¿ÿxðäqUðôðˆ
ðŒ Sð€ ´¿ÿxðö¿¹Kðô
ð"ŸªðH
ðŒƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇpì±Fðñ"
0ðˆÐðð ð( ð
ððX
ð Cð¿ÿxðäqUðôðˆ
ð Sð€¸´¿ÿxðö¿¹Kðô
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇs³Fðñ4
0ðˆàð”ð ð( ð
ð”ðX
ð” Cð¿ÿxðäqUðôðˆ
ð” Sð€°Ã´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð”ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰù´Fðñ
0ðˆðð˜ð ð( ð
ð˜ðX
ð˜ Cð¿ÿxðäqUðôðˆ
ð˜ Sð€TÙ´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð˜ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰù´Fðñ
0ðˆðœð ð( ð
ðœðX
ðœ Cð¿ÿxðäqUðôðˆ
ðœ Sð€,ù´¿ÿxðö¿¹Kðô
ð"ŸªðH
ðœƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇP€¶Fðñ
0ðˆð ð ð( ð
ð ðX
ð Cð¿ÿxðäqUðôðˆ
ð Sð€HS´¿ÿxðö¿¹Kðô
ð"ŸªðH
ð ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇК¼Fðñ+
0ðˆ ð¤ð ð( ð
ð¤ðX
ð¤ Cð¿ÿxðäqUðôðˆ
ð¤ Sð€„z«¿ÿxðö¿¹Kðô
ð"ŸªðH
ð¤ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇPµÂFðñ
0ðˆ0ð¨ð ð( ð
ð¨ðX
ð¨ Cð¿ÿxðäqUðôðˆ
ð¨ Sð€€w«¿ÿxðö¿¹Kðô
ð"ŸªðH
ð¨ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÂÅFðñ
0ðˆ@ð¬ð ð( ð
ð¬ðX
ð¬ Cð¿ÿxðäqUðôðˆ
ð¬ Sð€x¥«¿ÿxðö¿¹Kðô
ð"ŸªðH
ð¬ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐÏÈFðñ7
0ðˆPð°ð ð( ð
ð°ðX
ð° Cð¿ÿxðäqUðôðˆ
ð° Sð€Äe:¿ÿxðö¿¹Kðô
ð"ŸªðH
ð°ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇpVÊFðñ8
0ðˆ`ð´ð ð( ð
ð´ðX
ð´ Cð¿ÿxðäqUðôðˆ
ð´ Sð€‡:¿ÿxðö¿¹Kðô
ð"ŸªðH
ð´ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÝËFðñ9
0ðˆpð¸ð ð( ð
ð¸ðX
ð¸ Cð¿ÿxðäqUðôðˆ
ð¸ Sð€”:¿ÿxðö¿¹Kðô
ð"ŸªðH
ð¸ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÝËFðñ%
0ðˆ€ð¼ð ð( ð
ð¼ðX
ð¼ Cð¿ÿxðäqUðÃ:ðˆ
ð¼ Sð€ÐÍ:¿ÿxðö¿¹KðÃ:
ð"ŸªðH
ð¼ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ)
0ðˆðÀð ð( ð
ðÀðX
ðÀ Cð¿ÿxðäqUðìðˆ
ðÀ Sð€è:¿ÿxðö¿¹Kðì
ð"ŸªðH
ðÀƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ&
0ðˆ ðÄð ð( ð
ðÄðX
ðÄ Cð¿ÿxðäqUðÃ:ðˆ
ðÄ Sð€0Ñ:¿ÿxðö¿¹KðÃ:
ð"ŸªðH
ðăð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ
0ðˆ°ðÈð ð( ð
ðÈðX
ðÈ Cð¿ÿxðäqUðÃ:ðˆ
ðÈ Sð€Ðô:¿ÿxðö¿¹KðÃ:
ð"ŸªðH
ðȃð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǘÐFðñ*
0ðˆÀðÌð ð( ð
ðÌðX
ðÌ Cð¿ÿxðäqUðÃ:ðˆ
ðÌ Sð€T¿ÿxðö¿¹KðÃ:
ð"ŸªðH
ð̃ð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ@¥ÓFðñ
0ðˆÐðÐð ð( ð
ðÐðX
ðÐ Cð¿ÿxðäqUðÃðˆ
ðÐ Sð€h
¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðЃð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇà+ÕFðñ
0ðˆàðÔð ð( ð
ðÔðX
ðÔ Cð¿ÿxðäqUðÃðˆ
ðÔ Sð€Ð!¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðÔƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ€²ÖFðñ
0ðˆððØð ð( ð
ðØðX
ðØ Cð¿ÿxðäqUðÃðˆ
ðØ Sð€X7¿ÿxðö¿¹KðÃ
ð"ŸªðH
ð؃ð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ 9ØFðñ
0ðˆðÜð ð( ð
ðÜðX
ðÜ Cð¿ÿxðäqUðÃðˆ
ðÜ Sð€tb¬¿ÿxðö¿¹KðÃ
ð"ŸªðH
ð܃ð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ`FÛFðñ-
0ðˆðàð ð( ð
ðàðX
ðà Cð¿ÿxðäqUðÃðˆ
ðà Sð€œw¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðàƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ`FÛFðñ
0ðˆ ðäð ð( ð
ðäðX
ðä Cð¿ÿxðäqUðÃðˆ
ðä Sð€8‡¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðäƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÍÜFðñ
0ðˆ0ðèð ð( ð
ðèðX
ðè Cð¿ÿxðäqUðÃðˆ
ðè Sð€¬“¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðèƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ SÞFðñ
0ðˆ@ðìð ð( ð
ðìðX
ðì Cð¿ÿxðäqUðÃðˆ
ðì Sð€ d¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðìƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ@ÚßFðñ3
0ðˆPððð ð( ð
ðððX
ðð Cð¿ÿxðäqUðÃðˆ
ðð Sð€l¿ÿxðö¿¹KðÃ
ð"ŸªðH
ððƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ€çâFðñ
0ðˆ`ðôð ð( ð
ðôðX
ðô Cð¿ÿxðäqUðÃðˆ
ðô Sð€<>¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðôƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ/
0ðˆpðøð ð( ð
ðøðX
ðø Cð¿ÿxðäqUðÃðˆ
ðø Sð€U¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðøƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ.
0ðˆ€ðüð ð( ð
ðüðX
ðü Cð¿ÿxðäqUðÃðˆ
ðü Sð€Ð¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðüƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ0
0ðˆðð ð( ð
ððX
ð Cð¿ÿxðäqUðÃðˆ
ð Sð€Ø^¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ1
0ðˆ ðð ð( ð
ððX
ð Cð¿ÿxðäqUðÃðˆ
ð Sð€n¿ÿxðö¿¹KðÃ
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ:
0ðˆÀðð ð( ð
ððX
ð Cð¿ÿxðäqUðÃS
ðˆ
ð Sð€œ!
¿ÿxðö¿¹KðÃS
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.ªvÇ@ø%äðñ;
0œð”àðð,ð( ð
ðð^
ð Sð¿ÿxˆðäqUðÃK
ðŽ
ð cð$€À(K
¿ÿxˆðö¿¹KðÃK
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ<
0œð”ðð,ð( ð
ðð^
ð Sð¿ÿxˆðäqUðÃK
ðŽ
ð cð$€ÈK
¿ÿxˆðö¿¹KðÃK
ð"ŸªðH
ðƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ=
0œð” ð$ð,ð( ð
ð$ð^
ð$ Sð¿ÿxˆðäqUðÃ
ðŽ
ð$ cð$€lK
¿ÿxˆðö¿¹KðÃ
ð"ŸªðH
ð$ƒð0ƒ“rll”ÃCœ¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFÂxœíYoL[U?÷¾Â …•òÇ?Žº©å_™LéBoNPƒ&#…u³„?£€aqaËbü`÷aÙ×mqÑ/šÅŨ‰‰N?Ψѩ!&NƒXQ4ÏyÚÇZÓžöÇ»ïÞûÎïžÛsÎ={ûôÇ×Þ,¸Ù
,-§Cª®é'd¤¨}KËËËÚørRî(iƒüƒôã5cFW¸Ü…^ éâx/\årÿ´2¼W?wî§ÐïݯÌ0ò©i»æSOB/ø×Å©+p¦·ÇÌ3»¹ ñ7¢ý}p×Ñ=ëæÏF~ò{ß7óL=" ¶¹j+À%ÌËVÕ~Ë:øˆƒJ›ž»©Û¿%›°?
‘®Î·!è‘LPâ=)ÿ
ù'ã_ô]¨zÿJ2þáßÿÚ¾iy ÿÿ/‘`FÀ‡‘À8èÇ<ТÞ=g**Eô`½>³~û<7;smÙ"åNæ§Ü%çmPjªé)?ëãŸâ]ÿ›”¾ñŸàÊ9 äÔ< 3`PnÈG
Eˆ»ÛÅ@¾P‚(E܃¸±±qâ~Ä'¢Qލ@T"ª”'«;"j»!F<‚¨EÔ!Uíp«×dS¤Hþý¿yï:ÁG³Ù²OÔÃ9¸ˆí†ß&os;njÎS~OoïßP »qà ¿ÕwØ?Ž”ö@ŸHlñŠm}¾~pÞ±¾®^j üA‡¥¹]”Ž}è-i%UR¨©ÊÓβ?Öéi/Þ†í<»ÂRx{8´§[YöFº„¤°³s_8$÷4àõ…}Øð8;›:¥0}=ö†^Ì8
ZÂð4ð}ÙÊðþ„„·œz¸åäe¡‹Ãäu·áý)7¸9¼X÷“åÔ鏸!6R‚}äwÖÈ4—~ÐrªLvI+‡³ã8÷ì1P
tT˜áDhÄqsd—V$D9ê1('m|²•žêÔ·*ftà¤B9wi¹G{
˜>Ä„TšAc˜‰G*ͬ“_DP¦Rj/ù=ÇåV%ËWûl\›—ÁR¦EÊQ;Rí¸4bh–3Ø4¶_GÇttâT:4+š}Ã϶ÁcPd¤%ôqjår—ð4£Øù“¿vsV^íi¦ì d©!‹u®þËl¸vnvô:B¿}ÕvèÙZÁ”ܺӪeáñ1e¤ûcÛZº·m²NÅÖ-û?ÌÝÂq,±ÀÊí&Öÿó/b¯_á`1íX`óy&ìx;6‡;lù&ì˜ÏŽ«Å&ìx';z,
9&ìø%;z,…E&ìxwcvPµðW*ŠmU
÷yΤV¶‚¢ÒWÀNf+ë)Uë–ÓÊ+F\ñ\Y}=Z;S…ý¡Vh¢Å§A¹r˜’gào^êö÷P´ÐÛÇxIVE:¿û6[}^ˆÄ·«K‹§åqºÞÖ·`iY°*ºï®é=†;â®J—(
Žø†ýrÌFF¤½ò¹£
VRtÕ@¸öò ~1ÚF~e¦„ì
ISa§®Í0Hñ…”4ùÛ„xœí[
tUUvÞûæ?ü=å/¢Æ—ˆ"!! N}IP±¬˜hAÁŽf%Ñ0$Àص:3;Ëv¬Ì(ëˆuª‹ª0ÂjiÇjNfdªhµ]þAÖÄÖv˜a ýö9÷œwßË{á…û.ŒËwY_޹߹gŸ}öùî¹çž{Ø÷úyüÕæqRÜ¡,:ÕW@¹Ž½„ˆ†»Ü©¾¾>“ß—9¾PÇ\êÄ¿n
ÓµÔßtO¼<ÆPŽíólœgå;Šß®³g{¯ÝwCwá±
¯pHò‡MÝ@K©uPuzBrb4—J™+Qdê¿í_FËáÇôõA×>9,ºÏ"ýTË™š ö´uK?,9“úÝ~é¡_ÓéÀÉ3ÐÍ)ç)ˆF’ŽéhM%=.¤û¨€Ý)@%PLª ˜L®f3I÷÷W€ß®"Ûˆê€ú€|ü"góþÿààÌ£Ÿâþ—gJæþ×ǹ¾ÿM¹Ò〹¯ópžÄ˜h0bƒ¹g.Àõ》€‹bà ”¥@0˜LÊKË€IÀå@3¿ø2fþ&ú•ûWt ÷ç@ý/·®<7ä9>Ðø_¤³ÿ'g2þMgŽþ‡ãŽ¿7bj¥.Ä´JÅ5Õ£ãŸã¹/S+]:ˆJNsxÛ“>«_ŽúwGV¡¶ÿì–{öº‹ÚÚïì/n7µß¹¢³«³;rùÝjˆ¸nV{[Û454ÍSô”«ï^´¢{Êú|æ–oxk*Ãý[†U˜‹ÝJs¡¶ÅÔBù!êÉÍ¡+‹~–·£º€³ð„z!»T=§Š³k0&%.¥çÃ¥t
¯¡Û0 $Ê)ξ
ÃØEÉŠEëOn
¼8±)ê&I^»Î/Ξƒ!´t`§÷ÄûÆÁéÄc.›s©äÅ{•èŠþ6JÍW‹³'cÆP¼°bR¸lrYYÕŠ¯ÜæI_ZQªRõ+гïEM‘Ôí9½«Þë’9\‡ý®ÅÓ¢Òãô”ª¿õ©ëz]q~*žSOâ~èû“—ôm@9Ü€Q±a„<}îOÈB÷²7wß„¼ejÄ
S3~Wãw®š‰.Â<\JEKpj%[Ç8z5©ÏWá©þL_øÔôšõx,›° ÿI¦
Žžè»—z¼wïí¡BúÙøëŠîf™ËYWù3ã¤59ž<Æíù¼ãàý}úH=©ÕDjsÿÈh¦$z„rÿôô¨¿$‰íÛ·ãé½½TS³—öîí£-[¶hNŽ6Íõ)û®m7¡Xu~qÍÞ>Á^d÷R¯”éEÙ^üŠí¶>ªÙ»<®ôm0ßÖKëÖäjzÛÔD¤èUW#~ÕÐm¡áêA·R޹¡lb'D5<ÿs¯rü›r0êÌ©7)ºIý¥›C¹zí³Ô¼Ë³7j»¦œ(r©¬(•ïRÙžáØ¥r¢Ì±mšò.ù‘¦ò“I·99Ô´hik—\Äšû·ïíšýÐ3ušRMìÿH߃ßúG—RM|zòÕýò£.¥šøGÓŸ‹,¸u³K©&®üAQöüá;]J5qÝÕ¶ôЉ_¸”jâÇûJÿý×ßúÈ¥TŸúÛ+ŽÿóbC©&^^ôð›wp)ÕÄ:T·í¿º”jâ´¯½8g¨óq]6žŽn÷äÑìÖe¦‘Žnä;?ÿÕ¼ÿ|ú/ë4¥.|yVnv)ÕÈMÿ¶pÕ
Åϸ”jäXUòï\J5òü§_Þ1vâ—RÜÛÒøjÞUï»”j䟎‘’‡\J5r׋ÿð½Üc]J5r̉=GwÿÔPª‘á†ÏîÜÛrØ¥T#«o®šô7#Ö-¡Ïþ0”Okœ5U¼^rЬ££Î_Ë—t3îy–R;%$M½ïYŽz±výA-nVÙN(dµrÿTvÎona¹]ž„•:Lû‡òÝ’ÐBh¨ÒÍüF®ûÉg=‚ÉkK7©áMEÉe7WÒz"«Ke¹é\¤Í¤J,.T~‰‡×ÚÔÀ5;¨Y^òx6j]– vç4µ³µ:øÚ³P{¿ÃyêìÆà†øEðc
5túõ%ë4¾h…&óåXòÂ7>$×M@ÍŽ£ïîõÞòLO7S½0I[º!4Ê(?æÁ0ËÓ]ÇxŦÃvn?Û³CrS6¨þ’—IH“f@“{†ÄZ“L)6ÍÍ»X•ˆ?¤DX"ëþ»Ã½Š):„JÅ¡b
8Lƒšð·Dµ8/4ÔòùàqoxçûÍà¤
âKcâË%¡I‰*Ix\ÂÍ!´wY§ñŽc¼+ßßç‚8Ÿ%"Ægoo~#Ù;„ßñ îUµ$îÍëEéÍœ˜ÞºÃÜíNÂJû•ÔõË(LËÁvàžhÇyÎ[q_¶ãîh§;IwÓ=TŽG¯~ŠŸ£B£(Ñ!¾
Éx‹‰•†¢O½t%ÆQø-Æ$1ÉâÈhX‰ÖMÇ€´
¿7+AŒ°-ÌAG¯átz2k`½Ç+½ÚbH™zIÓKñ G;¨èb»pð%˜x;¸ãj´}$ìŒFõ-,SÃB*œ\÷/@Ž£—Žú-ÃB_ÅßËùF¥åjY¶Ûª£Ê «W5áV¨W¶0”rZ8O¤œ0ÍÃï"`%TVn¦p)DϤϬô Ìúß—û8ëÒ™õ¿ßú3ë™õ¿Ìú_fý/ÞçÌú_fý(³þ—YÿˬÿeÖÿ(³þ—YÿKî]:×ÿùB¯ÿÉÓäëR:õõ¿ÚÌú_JGfýÏÇúŸzï'=5d÷ÜtÈ–ÙD“ª¸rÒSŸ¬FJ•W¨\% ÎW3!ªˆ¤†:oðFGR–cGä$×gó0õ+©µX•³ö!þ,Z6jOÖO8]uš7:ÿ¦öe]áæÖÕá¹Ëuôk§X®`S>äÎhuyvœÒy÷tu·.Ó×J~ÿ3=Œ~ðú(Oy޳säýpâì%;úzNÉMy‰Ø˜ìåçøxœÍò?ç
N6®“³ß:ä¾çérYj2ûG¿ÓÍUp¶kÅØcGJÅëQn¨ñY9˜µ6ðcx´Ìw"<×i`9×µ™§ ¶š£~¡ÖDj÷Z[Góé1bUÎMžœ?ßDTRÓèìÝü*ÿˆ?pÛ.˜vJ=£”oÚ{ý’3RÙ0©ù޾j<®Ò\‰Í-±¹¹67ËæfÙÜÃdrÒc6er÷ØÜÝ6w·ÍÝdsŸ³¹ÏÙܵ6÷›û€Íí²¹Ëmîr›;ßæÎ³¹AØ{-×jE?Ô4›wzûØD|`EšúJS"…y•e”ÛïgªÓb?m4:NÔÆÄzÌ·w‚‰4µ5Å©ÖÀ¹5 •,6Ï¢…ÏR-o¢©@„Ÿµw©5cµ îî‹ÞÛr•±¶¥×ÃÚ³
’öX‹¹£´µ‚hz»"ù 5’? FŒ{c}`$ÔH|¯&ÖÈ{ðù=\ýM"ü^Ä+.±Ft|+”Å÷T:yDR׈ñïmÀXN#'àó ñJÙ‡ˆœð¥‘c(}ÖN(H:1þ}ëÁi$®å!<Àó‡ýhDÇ·VYK'Ò¢ã_FVc=8”Áï2®àržD¸Œýh¤¥‹`LAÒéЈñï"ÀXN#•ð¹’/åžD¸Ò—Ft|/U+U:1þ•Æzp¹>_Ïçñ<ˆðõ¾4RÒõ°v½‚¤Ó¡ãß5€±œFÀçœÅ·2^àK#:¾YÊâ•N‡FŒ7Æzpé†ÏÝ|”¾É¿"ÜíK#í(ÝkÝ
’N‡FŒKc=8ôÀçÞBßáîñ¥ß-ԣРâë_#Æ¿oÆzpy>?ÎГüáÇ}id-J¯…µÇ$ÿŒõà4²>oà%ô<ß
Dxƒ/èø.¡
*¾þ5bü{0ÖƒÓÈNø¼“¥Ýü0á¾4ò”þ ¬íTt:4bü{0ÖƒÓÈ>ø¼;èMÄýMDdŸ/èøvÐ>…_ÿ1þíŒõà4r>áûè3þá#¾4ò!JkG$ÿ>Œõà4r>çåô[^Dø¸/èø.§ã
*¾þ5büû0ÖƒÓÈh§G;t³ˆ°œŸ¹F
QºÖF+H:1þ
Œõà4RŸKœ[h‚s3áÇFt|o¡…_ÿ1þ]ëÁi$Ÿ#NÍrþˆpÄ—FªQºÖ"
’N‡FŒÓc=8ÌÏsœUÔätžãK#:¾«hŽBƒŠ¯ÿfÆz¼U}žkû-Ù
¾X×_”t=æëYôÛ’ùê½j$Rßw¹èW¦ñ–‹~[ʵ\ô‹Òa2\ô;ÒËE¿m²\ô›ÑZËE¿uY.ú}h>8ÝBï7
ùT^]XÍw©çU†Ñ8µºp4U}—žZ5†Q”ÿi¾:Ž×åkâø—\¾6Ž_ïòÓâøo»üô8~±Ë_Ç_çò3,ß¿gæ:ñܵíÁm–Ûf¹C–;d¹l8n†åfXîvËÝn¹ïZî»–{Ár/Xî˽c9vǶ—Yî2Ë͵Ü\G÷ëõ¼^õkÅ´DÆp¯j®ÖËÓ\—+RÀ*ª½\ƒæ¦
WàrjÇV•‡Y§˜©f›bª=Ì!ÅÔx˜ê«r‡™¡˜i4ÌUnªßòscød_ûò=÷wôŽÐ_ùâÿáNþ_ueôÛ«ýÕ…«ù×êlu·/k
wwV¶è\^ÞÚÑÕÞÙn]Ú~WûíKÛ»ïÉ…Ý$ãa.ª¿ùøT!X$%9rMŽJª”\[Xëb¿Óú·»“!Ýöbwx¿”ÊÕf¿æ~)Ž}à/¾±6öf÷Y²?ðœÆ3OØÛÿ©;ûH§í|œ^àO<õ÷¾Éï.R»Ó«·ó)uÚÞzîÃ|Œº…îUñýZDòm»‚‰ø`ì§:gJýkr²È·`ŒoâT"¾ù;ÕËÝ$O!Ä}LZâ_`[LüS±{G¿¯ÇÏÐ×—Èîà®Ht47döÿeöÿeöÿyw õR=?Ìsê1§¬g9?óýRºWíàhkÑ\RÓ|šçtz˜<Ýÿú´ûÿÄšIõ,¸ÞîáÿõUeÜër¥6·ÔææÚÜ››cs“ÉýÄî´û„æÙý&wÍÝcs7ÙÜ6w£Í]ks´¹ÚÜn›Ûes»lî|›;ßæJ¿(ûÿ¼Ê2J‹í÷3UÏ`ž]¿›ûÿ6¢ÕŽº@Òõ W¢RÛÿ÷C”þ!¬mT´ÇZÌ?ûI}ÿŸñö ÀÔÜþ¿—Ђ—h&¿L3I×'\—JmÿŸŽöLeñ%7ÚÉ"’úº”ño`¬·v¹>ï§~‹Â€¤+&µµË(½Öö+H:>"g²viü{0Öƒ[»<�Ÿàêi2 éÄImíRÇ·BY<àÆ7YDR׈ñï-ÀXN#'áóIšˆ7;¤ýhä(J…¥“
’N‡FŒŸÆzpÊõ<”ky×’ö£ßZeQ,L‹FŒ§0²ëÁidüžÀ<‘'’ö£‘1(=Ö&(H:1þŒõà42
>Oãrž® i?Ññ-W§¹ñõ¯ãßDµP[N#Mð¹‰Cܬ i?‰ t–š$ÿêc=8´Àçvøk
’ö£_GYlqãë_#Æ¿fÀXN#+áóJŒà«ù i?iCé6X[© éthÄøw`¬§‘5ðy
o¡ûx3 i?ÑñÝBkt|ýkÄø·0ÖƒÓÈðù ~„Öó:@Ò~4òJ?kO(H:1þý`¬§‘ðy#/¡Müu@Ò~4¢ã»„6*èøú׈ño=`¬§‘Wàó+ü(íBÜw©´lEé°öŠ‚¤Ó¡ãß߯zpÙŸ÷s'½Å€¤ýhDÇ·“ö+èøú׈ño`¬§‘£ðù(ßGŸò@Ò~4ò>J¿kG$ÿ>Œõà4rRÞ>x9BÜO©´èø.§“
:¾þ5büû0ÖƒÓÈoN'u:IûÑHž”†µ1
’N‡FŒù€±œF&Âç‰Î-T® i?Ññ½…&*èøú׈ño,`¬¹ÿ¯^íÿ«S´T¢t¥Ýÿ'éthÄøWT¾ÿ¯>7;«ég i?Ññ]MÍ
:¾þ5bü«Œõx«ú<ÕýõlêI´ÿ¯7î*ùÊô°ËE¿2•Y.úm)×rÑ/J‡ÉpÞïH†‹~=Úd¹è7£µ–‹~)ê¶œ÷ûÐÃnûïÿ›ŠYœœz÷ÿâ–$ûÿZ’ìÿkI²ÿ¯%Éþ¿–$ûÿZîÿkuùþûÿZîÿóöŒÙÿå®áhî°Ü˶ÜaËdž;
7Ór3-·Èr‹,w¿åî·ÜËm±Ü»–{×rŽc8Ƕc’å&Yn®åÌþ¿F~ªßþ¿F~ßþ¿Fþï~ûÿy\¿ý<«ßþ¿FîŒÛÿ×ÈÆíÿkäíqûÿù“¸ýŠÛÿ×x÷ÿý€?çþ?ueÿý«ø7™ýIw2œíý{Ü/űµ§oÞkgÉ~ÐûÿvðqÚ<¨ý;ÎÑþ??Œý³µÿo·ðæAíÿÛqN÷ÿù‰ÿwÿ_óãa|ŸG‘zŸoCŸÿxP}¾-¶Ï³êsÓù)õ‰‰äúäUôùS¶ÏÓo?¶Ï³ãú8Ï=rNú\ÿ”ŠS¯ë,xœímlSUôÜûº¯·nmùÚÊ¢²u†ƒâÈÊèDæ\·˜ðÃíu:²lëFLÌL4„_0þø…³˜Iˆ¿J¢‚ÑDˆHfŒ‰Ì‚‰Àæ9ï¾×¾výœ8:ÓÓwï»ßçžwÏ×=ýú+Ûåcï/¸a°$˜˜ÌLC3°dhm“““zÿdf4€>°ƒºñ݃á¬îC.Ð×’°.çjû¨è®5Ž}¯bÛHÆ;_0â©=§žNð$…Ó2pF¸¹Æ{‰Ì©Â4tü5HlÅ}´Â–¤ñáùDçuho®Ñ__Þ}P©þ‡û‘~’;$N¿Ój“(ÓëŽaÿZÊÂölL9 ¾µÑ<bËxnœþ4¤Ì¤ü_îÿæÉ?‰~ZþÜ+ùÿL“}ßyª"Í›BPBl@ß ¨#Òò?»À=Ð
J~ÊA7ê:¶-!©´OƒÿIVwXÂ,þ»
³¿î¿“î&•@>=ùgYZ{8žÈÇDêÛ(ÿ¤HÙ€y@º `>¦˜bZeÍ™†TØCªÃ‘dÁCá¶›Îq£â{±qp«Ç¾jY¥ÝÕÓ¯ø:¼Ýª ô¸jUnÐ;—wol\ þÇ>è12ÚÆF»k»¯WAnÉ^²Ü5¼~¹³ÞoµOp¸~Ö…ŒøåX:ô 8DZœÁð¡ÕV!=×Ñíìì\§ôul®ñ¶yê•<}`ËhìèòôÙë<öo—Ò
6É=ØÕêíÄ®oo‡§—:ÁfŠ‚ÿÉfgýxq–-Nð»üú‡×5cÉj©¡×°ËïhÞàV[ªñýÒ,8Íë›]~zœ3C)b)ah%¬£,ɬ¦1,hð´…qr7í¯‚*,nµ.‘XäÒ4{8VÆåP޵Rl:°‚f”Th3ö–ÖsîP“K½OÝŠ–uÔä’(7И1Ц}ç$6ÚAÙ.:É¡6ÊjqÎBšcXÀlX ׸øB꣊—²VÊúpßLÅ)8P©¾¦ýE%' j%ã:{!SR:Õk\Å™[™ÐiK5]¥ÃkÂö|*qV¢ò½¦ûôø×Æý‰“v`å¦D}x’n1¢ñ”ÚKšRø^j„ãDµ´ŒÍ×Úr¹>ÎÌ«y‹…täC™ü„EBÝÕ(–Oc²£Ý ¢µQ怄z‡´JÇIœJs¹ÉÎ-^2Bk¸Lœ9~màsLöʱOæ´¯!Z+˜¸Ë="‹IÇÒ¬&V?Êœ™bõ=Ó[]•øƒ K!°ÐÚ¥+ÊJË þæ»a‡ $_5„ãcIR#ð1õ›
|dÇÜ›ð×´…_‚yV~Œ1ng($f³jÏ‘þ¡ .…yŒÔRU^Q~Zjàß"u§´³|–égÙÔäbi½vôÚÕ œ;&@œ©Uõ_FT DJ܃}>O¬¡ó#Î_¯<Ы¿@8IêœuO ÆTwqhZ»¸°Zn¿`ÜÙE³âíbê×!HfOÓÖº·§EùÁåöƒS(ÿy”k0cþK`ByNF¼UõÂf¼K‘aÚŒw)]QŒv´mvŒ h²Ø^Šïbñ8½ƒüp:M7£V ïd·ŠÉ¢þfÕð€:é:N~
?ìˆëºn·YVÞø¾.¹6p“Ý>6@g~.¡6Ãçû-_ר¿B×ü)D£:ÌrKt,AéÅR~b–‰ggÅÓÛHKk"´„ém„jùfæ,"‡ôx¶À5z'EÊá¤)ï±í153!Aò ux›Ï~ëÓ•¸…SôŽlt$u×”ÅsM£®‡Ëí}8YVÅt-'ÿþ¬ÌSÊë¾WñŸ]éøOJàŸéøÏbLEQÖž)HÇ‚ñŸ}gCügåÿ$þzKbßbÍð*¥,QêÅÜÈŽobe§Iÿ¬åDãˆÚ›\ü§…µÆŽÿ´`¥GŽÿ´Dˆÿ¼›‘hüÇè›ÒÍ3‘øÏ«‘¼ì$VO.þ#ñNM´øO4jtOÛÀGçêmíûþáR–x¤)e‘"MKS#Mçx¼Ë_ù²“"Mñh‹iѸ¦ËiRf}¤)å5h:þ“ŽÿÌêøOàdNB^ûÉ»Á“S5#ê`|ê¡^ϧ|¦‹%é£)ÿa$¢‹#ÅW"a$½;˨ýWKU…ÿc´è‘ÁÆJòm,©ª–¥‰DÝ¢.:sWƒw[-æmµÙyöhÆw˜ò2Ó(<ŸIå,,º ÂNTôuÄBÏ6xœíZolSU?÷¾vt¯›]»MÆ@(S@»?t*H
e‘dsYGt°tÐá–ýn“É ÄøÁ™ˆ|ÑLúAƒ?¢Î(‹FA?bPÿ1A¬4lžó^_ûöÖ·½®¯S §;}·÷½w~÷wß9÷žw²¯¿rþðÆ{¥A##£¹£êc¨\ùQ`‹õŒŽŽR—€:š•[J ?½à†tá1}ZW˜Pîkü™[ÈÎÊ2$Ÿ^«¾Ö>³>òÉiæ¤óŠO= N S-"pFØ<æ{FîYZ
~
òï„í8ŽhOß…¡žO£÷µ¥Œ¤+,U|Š×yrÛŠzSuÿˆJŠm‚<§Å@>0µ•Ö]2+Ó(fÆ?ÅàDñÿî¡ZŠÿ\0?þ1rÉñÏhTö>#÷,Dü`ì„Î|Ž£ŸC]ì׳†fÅøHĘü¥¨ÏÅ6rå¾0v QÖÏÙQiÉÈG½ÕR
³`òøNe-ÉÊôŠ’¿‘ÿ’Ñ~@k6ùåw«Êó¿ŸãíÌm"1cýa)®?\µþ˜!j>æY½3ðFµ Ê6´{7åqµ¡Þgû¶‡Ý˪¼îÀŽ¡Þ¶î.i'ˆŸ ¬•vådÕš`mãRˆ.?¹Co*Aßá¶ ød%³ÂcùW=f~aè¯ô1.%S|ÿQÞ?Ì©à›)·2¾RÓ1²ÿ'Ëÿè]~¢÷?ÊKQg£ÎA½u.ê< ½`>j꽨÷¡.@]ˆºõ~ÔP=¨å¨¨•¨U¨‹QÉO«AÎKŒ—áñ!Ô‡QA]ŽºõQÔ•¨>HžÇÜ©û?‰òì•}\ÙšKñ|ŽQ–GçÐg]¹‚.”†öYx\KÇÙyx|˜v˪B<þH‡G»eö<>šZÿæòJLq¢ŒJÆ>Ê£ùÔ*ÄVÄ-÷•².yRÝï…sð¾ð+$¸
³™wiñعÄñ(g 4ñïûÕåÐwb6b‚a^‘vÍ@Cð¯Â j.¯šÅmlD5Ï«¼ÃΓ hבO}3Ù:¢¨– ‚QÊšŠ“D”v=¼¡¡Ç¤¼R½6,µAye"¦fëfãæY;:œÓFf`ìõUúnlvç$æºÆª¹Âç»1"¨ã'P<–¡Ï·ÞeI”Ç´s%Ù°a3·2°2zCÆDµð©¶.GÇêPOÛ–šîáúжp8ZOq
1NNkM÷ÎH[8B'Ái©mtv÷FB˜Ûæ/®Yì¯8oö×_›7ÛÅ?DÑÑÁÕÍØ*pÔÐa0õ4¯‹J=«ðøü:lø=ÍkšQúó;òN&ã(Ȉál ͘HS¼?€?9õpË“B‡~ênÀß}àãðB5þ¨ Nô(
>;Á>ÊåÅøe^õIËÁr)Í9Þƒ×Þ1ƒ%…dØß
pÚ®²JSŒ£q²ÆêéΈʼvªL A’È)Ö—ñDf ˆŸrIkÀ)é
|æeÁ¾žÞp'E½ý͇%SdóçŸ\±û…x|\êüuOÐq"ÿŸ¶ú“ŽÿÏ‘böÇ7#ô——\Ò¥+áÃv6V³±š¹X…¦ãùMêø¢¯¡_”øJäú“ÅW:ïþÓ:þ¯Ž¿·.'âoßålüeã/“ñ·H ÿºë_¹âÓ%ÆfÀÇò[ûL©ÙÄWôm›SÿÂñ7}ö½þøM©ÙÄCúæÔ¿ÇÆôx¨ÙÄWÓáa¤þ…<6¥ÃÃPýË&žé«%Æ“Éú×xÖæ×¿’11»þ•ŒG¦ê_Éødªþ•ŒW&ë_ɸe¶þ•Œá¸úW³õ¯É#*åú—M|mûùÉÖ‘ôê_¸†ô1þóú—M|ÝÈŒ«…&…²õ¯lNÿÌéÍQ´hë_‰÷sãõ/ûwÖû¿.>ŒûOÀtød%5ùgÓâ’:2xœíZkLW>sgØÜe((ÕmApµ¾š#ÂR›¤,¦šZ ÔÕb`Wa-%bJÁ4McŠI‰iš&Zcjú«ñ‡?øAýAÓ¦&}„`´Ä4þ°vÓ´6BÏ™Çθ²»³@Ã^÷Ì\gîÜïœ{Ï㞣—.æŒ}òåükÒ6“fHÓ=ã˜ú+€ <›˜œœ¤G<Òdª=R|øÇpïЪ
[>˜‚{NºÁÿ kȰüºF?övþצÏF83½·¨:µÚÀ¦¾‰À8½,…RüXdpüŽ>~XžŒ¼Äò4z
â…S ÈÜe$ù™2ŽIþà?f•|
À4‚c¬ØÝÝé÷´fíy‘¼ÏbxSå¼qݦ|ÏK÷ÛÈF´ºÊºçé¾%`µT–4U7¹ô«´dq÷‰1¼OLò¢F½\v‹ååøqêÞu‰Ûcœ$«âá/³h»õ›
®žïº†äpÜ좘"ÇY·W‹ªê–y¥¹wgF›ûƒyâ+áçæ”ØŠqX‡Ñ7ÏÿöHü«ñ/¼¦|rìLD¿p…3 Gn"rø…#ûñjbrübd?ò“c_9vÅ'‡zÊ²ËÆËT®dì“l“Ô³coi¡ülˆ6ÉüôN€Ækè¹bj~XPæì ?ô¤ÇÙã¬v¥ÕÀËXÕÂvHK•IñEÆ¢K}Ǫ§t¹
_ð£P#ìäÕžŠ¾ˆ-K—Ñ‹'Ut.NIAtŠ“¾–NúFÌtâdÄ3Â’5yÃ!–d釸oYè
'GF×7þÎrcœ-®Úž&ˆ¨Éx¿þ4¸Ü#üfó¯bY¹‹bèzNaŸ…ƒ?‡³M:1ˆE¥´ì´¨®á‡ü÷bÈÛÒŒlm…Ç2¦ÐáPûm σ&oV…¢oEYE¡—_—®ì(o Ž g8¤‚“—ÿHÀ<Å`Š’G™%·mëe3‘1<×TYgÑBìçY*!à
,lnžÕRE·W ¤iK`@z² ïoEÊ¿0“28ieDêeÊ+ÚïÂ>ãåþ¼ôõP/YÙªš%g¡yY_=ÍÛ¡j€à«¦K´™†¥–ÊÿãËÿ\è¥ü\Îÿ³(ÿŸ™ü?eÍsÛšg{ÿ“¸ÇÓµÓ¸W±y×éØÿHùÿúB9ÿ¯3«ùÿFÚãÊÿÇò#çÿ'ó“ÿß±‹µ·Fmpþôx×WHçͮ۹{6DÏÿÄhsïÍ/…ŸÛHþ¿.Ûÿu‘øžÿ·Û£aDÒ7éÑ´Çÿ\ÿ)èÁøÿiæžÏ“ÿ#ù«Ùö¿œî¿Ô©M›)Èô•ľPâ-‰ã#gù³¨Ç—Ñc#õÔã‰è±_È7bW“ã}#öXŸ˜WòÈñc|r¯ÿͽþ35?‘ê?wÙ®4ä'ŽúOdÙ£Õî2µþ£¡ÇR‰&i¸ÚȈ)ÞÚH4y§ªü®¯ô›£ÕFPw݃¿†Ó«ðµ‘íf6ò¶9´62”©ÕFÓ£ÕFP·
ÏC„ÚˆÛËÿaŠV9ÇSm䮊]©éj#Ö9QI¦g«VAzüÀYå÷ØÏ*31¦Îsûü÷?‘8—¸x2xœíYkLW>wfw
,볊¾*¤¾ªÖµ,°HÛ@)`ª¶—ºX/[1%Úhcbð‡ñgµ‰MMÓ•˜´iü±MiÒ`mÒ&¶&µ¶ÑøÇÄ঵Z ç̃ƙÝa- wù˜™;wï¹ß½çœ{îÙK?düþÁ¹Ù×@SÖƒCIàPÕ1§<¤¤ÈuƒCCCTÅ#†¦Ê„*ÕЊŸNpƒZðÚA*D-ÓÁ>¼æ´þüEICBÒë2uÛKŸ»ÝúÕ7,•2zš 0*™ê"ÇH6'ëž™ï,D¸@‘_‚ü›¡
ÇQ;G-߉¡žO³ßk”¯œÌ¿
g>P(~Ì—™ÈŸlÐæù' Ž>!Ý'#LêÊ Œiø]P7™²lšSz?¯3i0åÆ{y”ößvèØå;g¿²?ö¯ŒÛŒ˜²ÿÉW|°vƒ-¿í ý@¥ü´Ç”UºãвÕ$.f3Óe´òǺLdùJüN¾›|ˆA16"‘äc¥8â}òÝdódÛdÿäœ ù²ò
ŠýÏDÌBÌF<‰˜ƒ˜‹ÈBÌÒ€EˆÄ|Äy,„Åxÿb "‘‡x‘/·™*cSÎ&/H:¤Ý»i+üoÕÛî•…nß®ÝþÎÆÖQ†ßøÊDmP^”ÖTÔ®€ðšÞ]jE«¨uûöu¶ûQ[³—úzJ—z«Âéi¤üñå-Tij7bÓ9p
ºñÞÎðz[‰úõjc‹·©©ØßÑøfIëö@•G 2ìµÍwe`¯»ºµÙß|M°¹¾µ _•´îno´ÓKȰÈßPçꟗ…÷ÓÒ¼ö…†{Šëð.=„.=¾pn]y¸G¬)Âë;åxãÍ+ó…éÏ›–ÂЊ‡™0Üy|F[>òá#G5x¿ÿ좻¬EêÉÔëHÃÎvØÞ+T¿´Î•_ààä~l{ò€Ò;×M¶]&ûŵnF#NÄ—ëéZ2Ÿe£Ù模hé³:kjr¤z„é·Å–mÊM>ÄÌ‹‹+³Ié!òóój]ìc'ì:«¦õ…
f|aÚ°$êÛãñäy`?ÿ³cß“™·v½vû°Ývþ¶£Èô7ü#2§è†ôý+öfÝerå| Kª+畺+ö@퀔£XÎ+QÌÆ‹ùÇ1ÞPæ<§èjGk'!{íéTÁ£ÍlÅÎADöS—‰ýô|ªð·±Œ(û©G™°d³¾Ó›èÖÂÉZü‹hñ-6:-~œ³¿c›?R=âu¦Ÿ3W|²R$]æbåÒv u.úŒäÒyÓ¹ô©O1›ÿ/r„¢äÿ?Dtg\·ëçÿ·1mþÀDþcŠ×\Wc
£|ó€‰ü?žî÷;ß<`"ÿã=ÚøcåÍLäÿ‘Ç}k3³]Úm±ÝíŠÐ.•‡¶n»VP.tÛn)Jki"e«‹¬éƒ¾„
‚ÊÒ˜hâ#ü¨&þ€˜h1Õô&b"J!ø$kbTZϹ3³¯Îvgv¶P`ÎsçžûÍ=çÜ{¿ì?X/tfÞo%«A€ñ‰40‡•qá²R¤²ñ‰‰ ùþ„!÷”4A~úÀèÄ߈v…)%½@nKÀkáÏÊGÅÛµáu?|öÅî¿F¾ç˜OeË>õ<´ƒO“Íp±Ï‘m^ò=5Ï<‡š²ýjÄß»±mðšfû6à#|^ís~é——ð7â›÷A/8ÙG½ÌEüw&Pÿ!Ô¯2ÄszîvXÿÇ%…åi¨½c€tTzd6j¦d+´ÅûxBjÈtÊŒÿ›ƒ•]ÿVº0âŸÉÝŠÿ¯¥ø—ûMeáy žŒ‡ýÚ@|ŸóPs|`ë@>ˆCmÄþÌtC?x1òý˜¤«×UE¥=ÿ§Xujjªö“-÷²}yýNÃA9„Öô´>£ùŸæwZDÏÿn׸Êåÿã””âŸò#æ£.@-@-ò€…¨E¨ .B]Œºu)꣨¡£– >Žê@-E-C¥<ùj9ꓨËP—£>…ú4ê
Ô•¨Ï ®B@uímÖ VJØÕæ¦û1‡qø‹èCÑs7c½·oWËÀnŸ}y©Óîéî÷öù»:™'ïxj™7È7Kkšë[–A`åÙîpG«o±{ööõxÑ[R–y†jÊܬLò þüÖŠèüÃÆªfÀŠç)~©5ÔìÍþNw{{•·×ÿru×+¾F﫾^°¦´ø;|½öß{SW‡·¬Bó@G[W;Þªîêïñûzè&XM1ì¯mu7Þ*,ÀóÜL7<Å¡ªV<Ëʬ¦Ÿ!O ¸µ.0ÄJ*ñ÷`ž¸‹[kZ=úº338Œ"ŽGA$ÎÆ^c,YL슇Ã,â©Ï·àáÐ~:kÆR„Ÿ.V:D^náMG]àâá˜3ü¦éh Ãû°îð B[‘#)c;“g5£(ŒÓé›@pôÌ4bI޹ÉèXûï¦ÜHü`’ž¦Ò5#
Ašë¬Ð6U¯YÜI¹WæOx)dÞÁ÷´ “ñÞº‡™X¨0S´œbDejqíÇxdg¥\¾T–ÎËõ2øÑ”Á¥”£—˜3±dC’ep’ºk6Ö'öä&óbeip7¬“ÏyP?ÈA¹Ëî§h»+À"3L
W5c¨ÁóH¸ti2@ÌÀ¢ÐlûzMâxðlÖü—Ïa31À9V³MQó@oŸ¯àÌìhŽ^ÇYSÔæèUy<iÿ‹8VëÁ1fQ3ëôà3½—ÿEkôàH”ÿUÂ1]ü¯ž©øßÂyÉB”lþW ‰6þ÷tBü¯¶äó¿JèçO%Äÿ*!ÄÿVEò¿;âò¿eÕ§.i2mü/f‹†Ø6´ð¿·tñ¿ˆµF
V-üïVEþwXâ‹Âøß<ƒÿ5vƒ÷ýnPûn*!°‰âVÜ3DþŸG»Ü1þ(¦}àã×2$¶ãÿ ËÿW.*Ã2xœíZ]lU>wfwÙnö§-´ØÒ¥hë¶+‚Šv¥Û²X[K[¨¤nu‘5íú#4€B ¡$Bb"ᡚø ÁHÅ'Tž0F• /T³1&Jë9ó³ìtg¨ÔîÝýfïÜ™¹ç~3çœ{çk¯|g¹ùá§s†¨òð06žº°6†àä³ðÚÆÆÇÇ©‰GŒgÊ”*ЉŸ°üøÛ}Ñ®0a™
Úà3'ßà¿=dX<¼*ü\Ç•[³þúš‘O
›eŸzÚÁ›ÍðbŽ…óQsM5"dû5È¿6ã8Úà„í[Ñ>Å€ìûj®©Bø¤:'ñoÀ;ï…npõ%_â¯IÀþLÄF±N×Ý»cf`»‘t²FéÚY Æ|¦Lý’Îø§˜(þ7Pü[ ýñOVéWÍ5iŽÿˆ9OíuéŒÊ?‰Æÿˆ4±Ëã6AdP*tíé:9WXq?Ä{šäb®È䈇¿¸aô‚#߇qàÇ¢±ñ(b!bb1â1ÄãˆRDâ „Qލ@Pž|±ñb)bâiÄ3ˆgËÏ!žGT"œ@ï6+$..éwºæªBáùÿ~Ñ‚àøÕ*ø„N‚ëZ†ß•MuÍxSsZ|~W{{µ§Û÷fMç[ÞÏÛÞn°h›}Þn[½w«±³ÃãßÔ×ÑÖÙŽ‡j:{»|Þ.:M]³Í½§ËƒÞ¢Ÿ_áXYáj˜M/¶ºþ(ž‡õ<“îÀÂÀ@u+Ö̦úpJ[kBKþîªÅŠ«´ue«;@_—ÉÈЋ‡™0œ
yÜG_6h„=öº±‰£V¬¯ÃÍžTkÂV¤Ÿ-ž´‡¼ÌÀiö;ÁÉÁGøAÍþ2Á
ߎçß Ôh-±§¥sìçþÎ…3£:ç)Œ²i»@rtÍä’s÷³ú?¡½›üF#m2XÕÓ>w7ŠA#šÿß–ž›Šâ†œ;™tЬ‘Â.Öb2Ýf¤c˜IùJEÛ1:QÈ´âÚjŒÃ…Z9+Ú²9ù<#7¬í_L9v‘΄Ã$+uBÆú¢
Sæ&˜©é,#Ôyz65÷mÆi¼ŠQ/YÔGµ\îö£Øÿ›;uï–0Ú#Lz2f)‚¡:ϰkð'+œ;}{ë„Íqg«Ï´ñ0qµ3qnXbg‘í}âX©ïb}¼¾çåÖ(÷-Ä/ŒÞgcg˜
g¶Šñ÷O4~Ñ›€Ç¸Eµ©ñ¨ËSÁcwj<<…*x´¤ÆcW±
{Rãqd‘
¯¦ÂcDó†šç±7#šE*x¬K…‡}®m”HkBÁ¥sôœÇÌ
j)År+«Õ°Äpž‰¶*¸¡Ù©Ù
ñ1mQ²r8BVôšïÒÅ(ò®•:d—Y%/ÚèK•INУw8ÄÏ>~ƒnÿâð¢Ý³šõù©Ù
q‹¼ƒdQ¶r™‚h+,IvA+ôVà^×üža7ÙjmßÃm·Z؆˜¾œ›ÚBLÁ1ÐìnlZ•]
³”?'†¥è({ý¯ë‰FY›C¶acgÄðÉèlq@Ù†R”•ÙËì‘Q¦×|\9޲0¿ý@â¹nPÃÕ´Aï€N»Ó‰pøù^Ý^þ†ÎÏ¥ÝakN¤·•9?š<ohRÄË+5k,|æm"ó6‘y›{›[©Óz^Lø eh³}ç…wôÇ’¦¾îo¦˜¥yr>”/ÚÛVˆÎ'J[½«þ¥Ðƒ±qÞ ¾·Dk÷¤ãÈl[Vî°¹·ôzz|~!ó¸W j|°œb|)–ŸÙ¢0‚ðÂÂþ¤œ)“_þý—ø9÷4Õ%Qûé.SÙ¾üÿJúo,]t2õßÉÒe§«þ;iù_aÅ&ëσ舗ïˆús%œ„Ów¦¾þcµø×\n‰cÍ5=Wl
1¤¤ÿ^Âd¨Çƒ§t²þ»š'o¿&MPÿå†s”õß³ˆ~<ÜÃÅÖû!ZÿU¡ÿÖæš*£4¨–¼Gãé¿£ÌWÿý2×pA¹ïøúÖ(;WÿÅñ7O4þx:Ý(ûƪ‚ÇÅTxä26U+ÈwñÒÒ¶ v°€ûŒKÍŠ²B²2Ì%¥žÅ⩆ˆÊÙaŠÙp’ZV,Fæ -ZùÈ*V·;B¹Êe×âj=èq-Ç®Ç÷¸(ÕÄ~‹«ä Ï]:¡h%Ä+Rs:-ûù:à)ÿP†b!}fefÛ‡w¶MJ)8J>Œü’¸RÑÿ¿úoFÿ™Þå_™·‚‚r´ ³„¢0¯-²Ê´š»Pè𹿲öÁæªéGì!•$à&Œï(£- ˆ98 : ÿž> §2ªA”C …ÑOÚGp0دãq™g·â b(/PPö>F‰CÄ™œX0\á¬ó P¤ØÃiÆúÈØŸ4¡L£d¥|§”©¬«Äܯô±´$¶<¸Tºl¼„¾œÀ´ÂÌÄäÆüÈË,ÍDÏ\Ñtӌդ׼ÙÔÛìÝàâ4äLæ…üdèO>|ê²; ìì@Äîõ&ÙÉ6ŠÅ1èЇé(€àx/
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.þÿà…ŸòùOh«‘+'³Ù0¼Thpœ¨ ´À
àì
øäPowerPoint Presentation 502Microsoft PowerPoint@ز9Ý@@¼3ÐÝvÇV
G¨Sÿÿÿÿ‰g Ì)¡'ÑÁ ÷€€€€€€€€€ÀÀÀÀÜÀ¦Êð""")))UUUMMMBBB999ÿ|€ÿPPÖ“ÌìÿïÖÆççÖ©3f™Ì333f3™3Ì3ÿ3f3fff™fÌfÿf™3™f™™™Ì™ÿ™Ì3ÌfÌ™ÌÌÌÿÌfÿ™ÿÌÿ333f3™3Ì3ÿ333333f33™33Ì33ÿ33f33f3ff3™f3Ìf3ÿf3™33™3f™3™™3Ì™3ÿ™3Ì33Ì3fÌ3™Ì3ÌÌ3ÿÌ33ÿ3fÿ3™ÿ3Ìÿ3ÿÿ3f3fff™fÌfÿf3f33ff3f™3fÌ3fÿ3fff3fffff™ffÌff™f3™ff™f™™fÌ™fÿ™fÌf3Ìf™ÌfÌÌfÿÌfÿf3ÿf™ÿfÌÿfÿÌÌÿ™™™3™™™Ì™™33™f™Ì3™ÿ™f™3f™f3™™f™Ìf™ÿ3™3™™f™™™™™Ì™™ÿ™™Ì™3Ì™fÌf™Ì™ÌÌ™ÿÌ™ÿ™3ÿ™fÌ™™ÿ™Ìÿ™ÿÿ™Ì3™fÌ™ÌÌÌ3™33Ìf3Ì™3ÌÌ3Ìÿ3ÌfÌ3fÌff™™fÌÌfÌÿf™™Ì3™Ìf™Ì™™ÌÌ™Ìÿ™ÌÌÌ3ÌÌfÌÌ™ÌÌÌÌÌÿÌÌÿÌ3ÿÌfÿ™™ÿÌÌÿÌÿÿÌ3Ìfÿ™ÿ3Ì33ÿf3ÿ™3ÿÌ3ÿÿ3ÿfÿ3fÿffÌ™fÿÌfÿÿfÌ™ÿ3™ÿf™ÿ™™ÿÌ™ÿÿ™ÿÌÿ3ÌÿfÌÿ™ÌÿÌÌÿÿÌÿ3ÿÿfÿÌ™ÿÿÌÿÿÿfffÿfÿÿfffÿÿfÿfÿÿ¥!___www†††–––ËË˲²²×××ÝÝÝãããêêêñññøøøÿû𠤀€€ÿÿÿÿÿÿÿÿÿÿÛ4¡'A Ìx ÐÀ( xK€€€€€€€€€ÀÀÀÀÜÀðʦ""")))UUUMMMBBB999€|ÿPPÿ“ÖÿìÌÆÖïÖçç©3f™Ì3333f3™3Ì3ÿff3fff™fÌfÿ™™3™f™™™Ì™ÿÌÌ3ÌfÌ™ÌÌÌÿÿfÿ™ÿÌ3333f3™3Ì3ÿ3333333f33™33Ì33ÿ3f3f33ff3f™3fÌ3fÿ3™3™33™f3™™3™Ì3™ÿ3Ì3Ì33Ìf3Ì™3ÌÌ3Ìÿ3ÿ33ÿf3ÿ™3ÿÌ3ÿÿff3fff™fÌfÿf3f33f3ff3™f3Ìf3ÿffff3fffff™ffÌf™f™3f™ff™™f™Ìf™ÿfÌfÌ3fÌ™fÌÌfÌÿfÿfÿ3fÿ™fÿÌÌÿÿÌ™™™3™™™™Ì™™33™f™3Ì™ÿ™f™f3™3f™f™™fÌ™3ÿ™™3™™f™™™™™Ì™™ÿ™Ì™Ì3fÌf™Ì™™ÌÌ™Ìÿ™ÿ™ÿ3™Ìf™ÿ™™ÿÌ™ÿÿÌ™3ÌfÌ™ÌÌ™3Ì33Ì3fÌ3™Ì3ÌÌ3ÿÌfÌf3™ffÌf™ÌfÌ™fÿ̙̙3Ì™fÌ™™Ì™ÌÌ™ÿÌÌÌÌ3ÌÌfÌÌ™ÌÌÌÌÌÿÌÿÌÿ3™ÿfÌÿ™ÌÿÌÌÿÿÌ3ÿfÿ™Ì3ÿ33ÿ3fÿ3™ÿ3Ìÿ3ÿÿfÿf3Ìffÿf™ÿfÌÌfÿÿ™ÿ™3ÿ™fÿ™™ÿ™Ìÿ™ÿÿÌÿÌ3ÿÌfÿÌ™ÿÌÌÿÌÿÿÿ3Ìÿfÿÿ™ÿÿÌffÿfÿffÿÿÿffÿfÿÿÿf!¥___www†††–––ËË˲²²×××ÝÝÝãããêêêñññøøøðûÿ¤ €€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼’’’’’¼¼ÿÿÿÿÿÿÿÿÿÿFFFEFEon¼“oEFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿÿÿ¼’’¼’¼’’’’’ÿÿÿÿÿÿÿÿÿFFn¼’¼¼â’¼nEFF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?ÿÿÿÿÿÿÿÿÿ¼ÿ’’’’m’’’’’mmm¼ÿÿÿÿÿÿÿF?o’¼¼¼¼¼’¼¼¼’oFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿ¼’’’m¼¼¼¼¼’’’’mÿÿÿÿÿÿÿ?E“ÿ¼¼’¼’mm’¼¼’E?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?ÿÿÿÿÿÿÿÿÿÿ’’’m¼’’mmm¼¼’’mmÿÿÿÿÿÿFn¼¼¼Cmmmm¼¼»nFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿ’’m¼’m’¼’¼’¼’’mm¼ÿÿÿÿÿE¼’¼CCCCCmmmm’’¼EF?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?ÿÿÿÿÿÿÿÿÿ’’m’m’m’¼¼m’mmm’m’ÿÿÿÿÿo¼ÿ’mmmm’Cmmm’ÿ¼ŽFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿ’’’’’mm’¼’’’’m¼’’mÿÿÿÿÿn¼¼mCmCmmmC’Cs¼¼’F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?ÿÿÿÿÿÿÿÿÿm’m’’mm’’¼ø’m’’’mmÿÿÿÿÿ“ÿÿmmmmC’CCmmm¼¼¼FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿ’’’’¼m’’’¼’’’m¼’’mÿÿÿÿÿn¼’’CmmmmmCmCm’¼nF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?FF?ÿÿÿÿÿÿÿÿÿm’m’’’m’m’m’mm’’’’ÿÿÿÿÿo»¼’mmmCCmmmm’¼¼oFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿ’’’m’¼’’’’¼’m’’ø’ÿÿÿÿÿE“’¼’mCCCmmCm¼’’EF?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?ÿÿÿÿÿÿÿÿÿ¼’’m’’m’’’’¼’’m’mÿÿÿÿÿÿFn¼¼¼mmCCmmC¼¼¼nFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿ’¼m’’’m¼¼’’’m’m’ÿÿÿÿÿÿE’¼’¼mmCm’¼’’’FF?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?F?F?FF?ÿÿÿÿÿÿÿÿÿÿ¼’¼m’’¼’’’mm’mm¼ÿÿÿÿÿÿFEi’¼’¼’’’¼’¼’oFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿÿ¼’¼’’’¼m’’¼’’¼ÿÿÿÿÿÿÿEFFn’’¼ÿ¼’’nFFEF?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?F@F?F?F?ÿÿÿÿÿÿÿÿÿÿÿÿÿ’’’¼’¼m’m’¼ÿÿÿÿÿÿÿÿFFFEFEon“noEFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼¼’’’’’ÿÿÿÿÿÿÿÿÿÿÿ¨¬-oÕ¶k«;Ð{¡÷È^†w”’ï[û†ÐÑ3ù(0p¥ñYô'/înï8˜^$p%l Ç*:“:•d €N¥o÷QI}¼ðþÚ†³
/9×àBmcid>o]ûéÊß×Lûúa% W²¼,ù8z·‹X§Š«=÷¥-8?†Aýi?ê QÐÉš óô¡˜GèU^¹o½}i~ŽÌo}²´ã@f@dQÅ!ô<Qý:F>VÄ•î¢J&QiÑYÞ©mÂ,ŠF9üØÕv˜²DDC瀶²Dk»pÅK›+pu»
gü^3H_?wº‡”¶Ó¸Ò=T©Ÿ¨T[…˵͵ËWwÖj›¸§œŸÅÝ
âšC¸ß¬¯øžtD¡¯’nóÝœST“W¸¡ùnúv?E•ˆˆ±KCà¤æ”jg>„žÞŸðÝœS"×÷Þ¡½ï:?K)w~Né#bÞÝ\ßõmGÖ]@ÝxjHϰ6RÙ)ßµ9%MT"m߆QŽÃÏOk”ÖÚëÞ‹àŽæõ~x``Ï/^˜‡W;¾ÏàÇDÖK¾w4›È™¿zy}m.:CøÓò:Ä|y÷sþÓ5"{¼ô÷kC"¢àÎX€Ç²tGë'ch´ÑªbtÓÕ’Ñýš¢»ëôžá9ý
ÄûÀé(§Oû~ìýDÖ¡ÓØ?æwÐÓg–DÔ€ó¤§g|O÷Œ£DÍ,ìAíò4ŒÜ=#MÔ#-…‘äøù¸6-Þ´½i1b°›ò¾µë«Y\qè`ZülKDĘ3äOÛ"xh›ÄgããõÚ®³r\ôûô:<œ:ùYndŸÓ¤¦ŸŒy.&Ë]- “eiVM1Ù½ÞJyßÉÝ¿öu<„›]¯„¯¥%"êKt%ìúø^Ú$Îð|üª¬7‚>AŠŽ1ÏËaYº•JõÄ8,KÑŠ‡Þ~æ_o7ñ@=†ìíœÀËú« ö1OÑqk¿‡6N §àç6ŠçWIá}‡xÞz¿•p½¼"ž7‹Þ?¯$[¬¿ÛZ²õÉÖ{l$[oÄNæç„l½ÝT²þnò¢vß·%Þî»ß°ÿ8Ü}Ëþ¤Y–é=÷¹bqâùÁßæ´Õ ÷Ü`”PrÒq$‹ØI&ðœÍüJÃ(§32U¿§wËTÕ>?f\•‰½R~’Ìÿ‚ÞóM†©2u‹Øò|Uôža2LÕï¦L\iU£ô52TÕ7¶E\
S|Uÿ¡®¡ª®§eb*NäÈüߨk̆2¨êhbŽË}šA5FžŽòØ'¯,Ëdë±32NÞ;h½¢’l=vFÆíÏÕ’ÇÎȸëýi$[‘qýÌÚÉÖcgdÜþ>
ä±»©VpÆá
;ãZ1f\‹qÞ÷¶cƵØ7Eæ33nj4p¢…fœ2ãXMÝŠ#Ô|+Lža&ßT˜VfòQZ™É7æ èäk±“/TUôäk…L>–ŠB2žËå‚„T†\°¿Š"JHEaÉû«(Ñ„T”^„tU1WÁ ¾*>%š…ŠÂg¡¢ˆ²PQø,T”h*
Ÿ…f…sAš1Xh²,LòúkÆ`¡Ùƒ…fš,¾*>Í,4c°ÐdY˜æ«â³ÐìÁB3®`a<È‚«òYpU†.ë®ÊgÁU£YpU>®*Ê‚«òYpÕh\•Ï‚«Š²àª|\5šWå³PÒ,äƒ,”4>%M”…’Æg¡¤E³PÒø,”4†…I¾*>%-š…’Æg¡¤‰²PÒø,”´hJŸ…v…‰ í,´…YhÇ`¡Í²0Mæ3,L‡©bXˆ¡Šaa:LÃ¥Ša!T•(m–…PUÑ,´{²Ð‰©ë€ú”ÇQþ1ÿL¨Ä™\®iBê:Ÿº.JH]çR×£ ©ë|Bêº(!uOH]&¤®ó ©ë¢„Ôu>!u=šºÎŸU#0-&ƒÓ¢jðY¨¢,T
>Uƒa¡Hæ3,ÃT‰²P5Šaª(U¡ªDY¨¡ª¢Y¨|,3ÀÂTËä³`™¢,X&ŸËŒfÁ2ù,X¦(–ÉgÁ2£Y°L>–)Ê‚eòY°Ìh,“ÏB#ÈÂt…FÂ,4b°Ð`X ûk°,„ªe¡Á²ªŠfVŰªJ”…ËB¨ªh¦ø½wï×ÊYKüÞ»÷{Ó¬%~ïÝû½ ’'~ïÝû=mÖ:¯$[OüÞ{§¿ÛZ²õÄï½wÖ{l$[OüÞ{ÇÏ ;Ùzâ÷Þ;ýÝìqï½Ãþ‚uü`z=ôØG߯îÿ$Tð»ÿÖIãðn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò/È0ÒÕL·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€tðlð`(‹½R
‹!¢
%
-
/3Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò/È0ÒÕL·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€tðlð`(‹¼R
‹!¢
%
-
/3476:;>@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüVð$ÿ2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?
!"#$%&'()*+,-./0123456789:;<�=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ
!"#$%&'()*+,-.w0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
MotivRoot Entryÿÿÿÿÿÿÿÿd›Oφꪹ)è Q„ÆnzÇ“ PicturesÿÿÿÿÿÿÿÿúdCurrent Userÿÿÿÿÿÿÿÿÿÿÿÿ)SummaryInformation(ÿÿÿÿLìT‚ƒ„…†‹ýÿÿÿýÿÿÿýÿÿÿýÿÿÿŒ”Þýÿÿÿýÿÿÿýÿÿÿþÿÿÿà•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍ{ÿÿÿÿÿÿÿÿÿÿÿÿÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüþýÿÿÿÿ‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×þÿÿÿÿÿÿÿÿÿÿÿýÿÿÿÿÿÿÿÿÿÿÿþÿÿÿþÿÿÿÿÿÿÿáâÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvþÿÿÿxyzþÿÿÿ|}~Ñ€þÿÿÿ
!"#þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿö_À‘ãÑôsemsemþÿÕÍÕœ.“—+,ù®DÕÍÕœ.“—+,ù®Ü˜ˆ´ÀÈÐØ à
èðø
ýéýPresentazione su schermo£Ñd('æ-Times New RomanArialStruttura predefinitaMathType 5.0 EquationGrafication¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)Ÿª
óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êîÇï
€0ÞðÖ0ð(ðnð( ð
ð(ð°
ð( “ð6€dkw€¿ÿˆS"ñžÿÿÿÿŸÿÿÿÿ ¡Á¦ÿÿÿÿð¤°ÐzðÃ
w
ðžð~
ð( sð*€p2}¿ÿˆð°ÐðÃw
ðžðH
ð(ƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ‘Љº___PPT10‹ië.EÄ %å8+Dñ='ñ yÿÿÿÿ=ñ
@Bñ +r©8‹Àõ>™…8PËÅ1èЇé(€àx/
_A F
òÌžÍÃ8 How Large is the Retirement Consumption Drop in Italy?MotivationMotivationMotivationWhat Others Have DoneWhat Others Have DoneWhat Others Have DoneWhat We DoPunch-lineThe Causal ProblemIdentification in a nutshellIdentification in a nutshellIdentification in a nutshellEndogeneity of S*Endogeneity of S*DataThe Reform ProcessDiapositiva 18The measurement of eligibilityThe measurement of eligibilityDiapositiva 21Diapositiva 22!Retirement by Eligibility StatusMeasurement ErrorMeasurement ErrorMeasurement ErrorEstimationmA key feature of the Italian pension system is that many individuals retire as soon as they become eligible 8First Stage E{R|S} = α0 + α1 S + α2 S2 + α3 1(S>0) 9Reduced Form E{Y|S} = δ0 + δ1 S + δ2 S2 + δ3 1(S>0) Estimation resultsEstimation resultsSpecification testsEconomic InterpretationBack of the Envelope StuffWork-Related ExpensesWork-Related ExpensesDiapositiva 38Work-Related ExpensesConclusionsCaratteri utilizzatiModello strutturaServer OLE incorporatiTitoli diapositive(476:;>@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüV2ð$.‚M¸D†XnV$‰Ø'¨ÿÀ:]2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)Ÿª
óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we woul
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxzýÿÿÿ{|}~€d not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êî}ï
€0”ðŒàðð$ð( ð
ðð†
ð
Sð€($E¿ÿðàpÐðÃE
𠟪ð^²
ð
“ð6Aƒ¿Àÿ ?ðâðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ }ÿÿÿÿ=ñ
@Bñ +rŒÃGdKõ)™hÃéM‹Å1èЇé(€àx/
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò/È0ÒÕL·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€tðlð`(‹¼R
‹!¢
%
-
/3476:;>@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüV2ð$.‚M¸D†XnV$‰Ø'¨ÿÀ:]2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)Ÿª
óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êîïï
€0ðþàðð–ð( ð
ðð^²
ð
“ð6Aƒ¿Àÿ ?ðù´1ðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ }ÿÿÿÿ=ñ
@Bñ +r%NGýÕõ)™Nô׋Å1èЇé(€àx/
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò/È0ÒÕL·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€tðlð`(‹¼R
‹!¢
%
-
/3476:;>@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüV2ð$.‚M¸D†XnV$‰Ø'¨ÿÀ:]2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Im‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)Ÿª
óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êr0Øõ)™Ø`‹Å1èˆé(€àx/
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò`/È0ÒÕ˜·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ·DArialNew RomanT©T©¬r’Ü–É0Ü–Õ"¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€„ð|ðp0R
‹!¢
%
-
/3476:;>•@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüVð$ÿ2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êî°;ï€0Ç:ð¿:àðK”
ðW:ð( ð
ðð:ð˜ ðùZ´
ð”
ð#"ñ2Ÿ Ã&0´éè´´´´ðZù´ðÃ'ðÐ
ð€
£ð<�€T¿ƒ¿Àÿ?ðVL
´
ð\Ÿ¨40¡*("ª ð×
ð
£ð<�€ˆ¿ƒ¿Àÿ?ð&L
V
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ð~
£ð<�€Üò¿ƒ¿Àÿ?ðAL
&
ð\Ÿ¨38¡*("ª ð×
ð}
£ð<�€0ῃ¿Àÿ?ð L
A
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ð|
£ð<�€Ð¿ƒ¿Àÿ?ðL
ð\Ÿ¨38¡*("ª ð×
ð{
£ð<�€H¾¿ƒ¿Àÿ?ðìL
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðz
£ð<�€ø¬¿ƒ¿Àÿ?ðùL
ì
ð]Ÿ¨2004 ¡( "ª ðÐ
ðy
£ð<�€$ž¿ƒ¿Àÿ?ðV˜´L
ð\Ÿ¨40¡*("ª ð×
ðx
£ð<�€Ž¿ƒ¿Àÿ?ð&˜VL
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ðw
£ð<�€}¿ƒ¿Àÿ?ðA˜&L
ð\Ÿ¨37¡*("ª ð×
ðv
£ð<�€ìk¿ƒ¿Àÿ?ð ˜AL
ðcŸ¨ 56 and 35¡*
( "ª
ðÐ
ðu
£ð<�€[¿ƒ¿Àÿ?ð˜ L
ð\Ÿ¨37¡*("ª ð×
ðt
£ð<�€èI¿ƒ¿Àÿ?ðì˜L
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðs
£ð<�€ü8¿ƒ¿Àÿ?ðù˜ìL
ð]Ÿ¨2003 ¡( "ª ðÐ
ðr
£ð<�€”)¿ƒ¿Àÿ?ðVä ´˜
ð\Ÿ¨40¡*("ª ð×
ðq
£ð<�€p¿ƒ¿Àÿ?ð&ä V˜
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ðp
£ð<�€d¿ƒ¿Àÿ?ðAä &˜
ð\Ÿ¨37¡*("ª ð×
ðo
£ð<�€<õ¿ƒ¿Àÿ?ð ä A˜
ðcŸ¨ 55 and 35¡*
( "ª
ðÐ
ðn
£ð<�€P促¿Àÿ?ðä ˜
ð\Ÿ¨37¡*("ª ð×
ðm
£ð<�€8Ó¿ƒ¿Àÿ?ðìä ˜
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðl
£ð<�€L¿ƒ¿Àÿ?ðùä ì˜
ð]Ÿ¨2002 ¡( "ª ðÐ
ðk
£ð<�€€²¿ƒ¿Àÿ?ðV0´ä
ð\Ÿ¨40¡*("ª ð×
ðj
£ð<�€\¢¿ƒ¿Àÿ?ð&0Vä
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ði
£ð<�€ ‘¿ƒ¿Àÿ?ðA0&ä
ð\Ÿ¨37¡*("ª ð×
ðh
£ð<�€ˆ€¿ƒ¿Àÿ?ð 0Aä
ðcŸ¨ 55 and 35¡*
( "ª
ðÐ
ðg
£ð<�€øo¿ƒ¿Àÿ?ð0 ä
ð\Ÿ¨37¡*("ª ð×
ðf
£ð<�€ä_¿ƒ¿Àÿ?ðì0ä
ðcŸ¨ 56 and 35¡*
( "ª
ðÑ
ðe
£ð<�€¨O¿ƒ¿Àÿ?ðù0ìä
ð]Ÿ¨2001 ¡( "ª ðÐ
ðd
£ð<�€ˆ?¿ƒ¿Àÿ?ðV7´0
ð\Ÿ¨40¡*("ª ð×
ðc
£ð<�€Ø/¿ƒ¿Àÿ?ð&7V0
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ðb
£ð<�€p ¿ƒ¿Àÿ?ðA7&0
ð\Ÿ¨37¡*("ª ð×
ða
£ð<�€à¿ƒ¿Àÿ?ð 7A0
ðcŸ¨ 54 and 35¡*
( "ª
ðÐ
ð`
£ð<�€¿ƒ¿Àÿ?ð7 0
ð\Ÿ¨37¡*("ª ð×
ð_
£ð<�€Èéþ¿ƒ¿Àÿ?ðì70
ðcŸ¨ 55 and 35¡*
( "ª
ðÓ
ð^
£ð<�€ÜØþ¿ƒ¿Àÿ?ðù7ì0
ð_Ÿ¨2000 ¡*("ª ðÐ
ð]
£ð<�€tÉþ¿ƒ¿Àÿ?ðV>´7
ð\Ÿ¨40¡*("ª ð×
ð\
£ð<�€P¹þ¿ƒ¿Àÿ?ð&>V7
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ð[
£ð<�€¨þ¿ƒ¿Àÿ?ðA>&7
ð\Ÿ¨37¡*("ª ð×
ðZ
£ð<�€ü–þ¿ƒ¿Àÿ?ð >A7
ðcŸ¨ 53 and 35¡*
( "ª
ðÐ
ðY
£ð<�€†þ¿ƒ¿Àÿ?ð> 7
ð\Ÿ¨37¡*("ª ð×
ðX
£ð<�€øtþ¿ƒ¿Àÿ?ðì>7
ðcŸ¨ 55 and 35¡*
( "ª
ðÓ
ðW
£ð<�€dþ¿ƒ¿Àÿ?ðù>ì7
ð_Ÿ¨1999 ¡*("ª ðÐ
ðV
£ð<�€PTþ¿ƒ¿Àÿ?ðVŠ´>
ð\Ÿ¨40¡*("ª ð×
ðU
£ð<�€,Dþ¿ƒ¿Àÿ?ð&ŠV>
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ðT
£ð<�€3þ¿ƒ¿Àÿ?ðAŠ&>
ð\Ÿ¨36¡*("ª ð×
ðS
£ð<�€à!þ¿ƒ¿Àÿ?ð ŠA>
ðcŸ¨ 53 and 35¡*
( "ª
ðÐ
ðR
£ð<�€Ðþ¿ƒ¿Àÿ?ðŠ >
ð\Ÿ¨36¡*("ª ð×
ðQ
£ð<�€þ¿ƒ¿Àÿ?ðìŠ>
ðcŸ¨ 54 and 35¡*
( "ª
ðÑ
ðP
£ð<�€Xîû¿ƒ¿Àÿ?ðùŠì>
ð]Ÿ¨1998 ¡( "ª ð
ðO
óðZ€<Üû‚ƒ„‡¿ƒ¿Àÿ?ðVZ´Š
ð|Ÿ 0Self Employed Seniority¡ "ª ðD
ðN
óðZ€Ëû‚ƒ„‡¿ƒ¿Àÿ?ð&ZVŠ
𲟨Self-employed
Age & Seniority¡L 1
ÿ
"""ª$
ð=
ðM
óðZ€¸¹û‚ƒ„‡¿ƒ¿Àÿ?ðAZ&Š
𫟨Public Sector
Seniority¡L
1
ÿ
""
"ª$
ðD
ðL
óðZ€X¨û‚ƒ„‡¿ƒ¿Àÿ?ð ZAŠ
𲟨Public Sector
Age & Seniority¡L 1
ÿ
"""ª$
ð¢
ðK
óðZ€ä–û‚ƒ„‡¿ƒ¿Àÿ?ðZ ŠðPˆHŠ@º___PPT9‹"¬€ÿÿ
𸟨Private Sector
Seniority¡X
1
ÿ"" "ª$
ð
ðJ
óðZ€X…û‚ƒ„‡¿ƒ¿Àÿ?ðìZŠðRˆJŠBº___PPT9‹$¬€ÿÿ
ðÁŸ¨Private Sector
Age & Seniority¡Z ³
" ÿ"""ª$ ðï
ðI
óðZ€Dwû‚ƒ„‡¿ƒ¿Àÿ?ðùZìŠ
ð]Ÿ¨Year ¡( "ª ð`B
ð
ƒð0¿À€Ë8c×ÿ
?¿ðùZ´Zð`B
ð‚
ƒð0¿À€Ë8c×ÿ
?¿ðù´ðTB
ðƒ
cð$¿×ÿ
?¿ðùZùðTB
ð„
cð$¿×ÿ
?¿ð´Z´ð`B
ð‡
ƒð0¿À€Ëœ1×ÿ
?¿ðùŠ´ŠðTB
ð‰
cð$¿×ÿ
?¿ðìZìðTB
ðŒ
cð$¿×ÿ
?¿ðZðTB
ð
cð$¿×ÿ
?¿ð Z ðTB
ð’
cð$¿×ÿ
?¿ðAZAðTB
ð•
cð$¿×ÿ
?¿ð&Z&ðTB
ð˜
cð$¿×ÿ
?¿ðVZVðTB
ðœ
cð$¿×ÿ
?¿ðù>´>ðTB
ð½
cð$¿×ÿ
?¿ðù7´7ðTB
ðÞ
cð$¿×ÿ
?¿ðù0´0ðTB
ðÿ
cð$¿×ÿ
?¿ðùä ´ä ðTB
ð
cð$¿×ÿ
?¿ðù˜´˜ðTB
ðA
cð$¿×ÿ
?¿ðùL
´L
ðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ 'ÿÿÿÿ=ñ
@Bñ +r<`GRèõ)™`
$‹Å1èˆé(€àx/
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍýÿÿÿ
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz|ýÿÿÿ}~€Ã¬!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò`/È0ÒÕ˜·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ·DArialNew RomanT©T©¬r’Ü–É0Ü–Õ"¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€„ð|ðp0R
‹!¢
%
-
/3476:;>š@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüVð$ÿ2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the retirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êî¾;ï€0Õ:ðÍ:àðK™
ðe:ð( ð
ðð-:ð˜ ðùZ´
ð™
ð#"ñ2Ÿ Ã&SÆ]MJKðZqÁ
ðÃ'ðÐ
ð€
£ð<�€T¿ƒ¿Àÿ?ðVÙ´
ð\Ÿ¨40¡*("ª ð×
ð
£ð<�€ˆ¿ƒ¿Àÿ?ð&ÙV
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ð~
£ð<�€Üò¿ƒ¿Àÿ?ðAÙ&
ð\Ÿ¨38¡*("ª ð×
ð}
£ð<�€0ῃ¿Àÿ?ð ÙA
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ð|
£ð<�€Ð¿ƒ¿Àÿ?ðÙ
ð\Ÿ¨38¡*("ª ð×
ð{
£ð<�€H¾¿ƒ¿Àÿ?ðìÙ
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðz
£ð<�€ø¬¿ƒ¿Àÿ?ðùÙì
ð]Ÿ¨2004 ¡( "ª ðÐ
ðy
£ð<�€$ž¿ƒ¿Àÿ?ðV¡
´Ù
ð\Ÿ¨40¡*("ª ð×
ðx
£ð<�€Ž¿ƒ¿Àÿ?ð&¡
VÙ
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ðw
£ð<�€}¿ƒ¿Àÿ?ðA¡
&Ù
ð\Ÿ¨37¡*("ª ð×
ðv
£ð<�€ìk¿ƒ¿Àÿ?ð ¡
AÙ
ðcŸ¨ 56 and 35¡*
( "ª
ðÐ
ðu
£ð<�€[¿ƒ¿Àÿ?ð¡
Ù
ð\Ÿ¨37¡*("ª ð×
ðt
£ð<�€èI¿ƒ¿Àÿ?ðì¡
Ù
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðs
£ð<�€ü8¿ƒ¿Àÿ?ðù¡
ìÙ
ð]Ÿ¨2003 ¡( "ª ðÐ
ðr
£ð<�€”)¿ƒ¿Àÿ?ðVg ´¡
ð\Ÿ¨40¡*("ª ð×
ðq
£ð<�€p¿ƒ¿Àÿ?ð&g V¡
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ðp
£ð<�€d¿ƒ¿Àÿ?ðAg &¡
ð\Ÿ¨37¡*("ª ð×
ðo
£ð<�€<õ¿ƒ¿Àÿ?ð g A¡
ðcŸ¨ 55 and 35¡*
( "ª
ðÐ
ðn
£ð<�€P促¿Àÿ?ðg ¡
ð\Ÿ¨37¡*("ª ð×
ðm
£ð<�€8Ó¿ƒ¿Àÿ?ðìg ¡
ðcŸ¨ 57 and 35¡*
( "ª
ðÑ
ðl
£ð<�€L¿ƒ¿Àÿ?ðùg ì¡
ð]Ÿ¨2002 ¡( "ª ðÐ
ðk
£ð<�€€²¿ƒ¿Àÿ?ðV´g
ð\Ÿ¨40¡*("ª ð×
ðj
£ð<�€\¢¿ƒ¿Àÿ?ð&Vg
ðcŸ¨ 58 and 35¡*
( "ª
ðÐ
ði
£ð<�€ ‘¿ƒ¿Àÿ?ðA&g
ð\Ÿ¨37¡*("ª ð×
ðh
£ð<�€ˆ€¿ƒ¿Àÿ?ð Ag
ðcŸ¨ 55 and 35¡*
( "ª
ðÐ
ðg
£ð<�€øo¿ƒ¿Àÿ?ð g
ð\Ÿ¨37¡*("ª ð×
ðf
£ð<�€ä_¿ƒ¿Àÿ?ðìg
ðcŸ¨ 56 and 35¡*
( "ª
ðÑ
ðe
£ð<�€¨O¿ƒ¿Àÿ?ðùìg
ð]Ÿ¨2001 ¡( "ª ðÐ
ðd
£ð<�€ˆ?¿ƒ¿Àÿ?ðV$´
ð\Ÿ¨40¡*("ª ð×
ðc
£ð<�€Ø/¿ƒ¿Àÿ?ð&$V
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ðb
£ð<�€p ¿ƒ¿Àÿ?ðA$&
ð\Ÿ¨37¡*("ª ð×
ða
£ð<�€à¿ƒ¿Àÿ?ð $A
ðcŸ¨ 54 and 35¡*
( "ª
ðÐ
ð`
£ð<�€¿ƒ¿Àÿ?ð$
ð\Ÿ¨37¡*("ª ð×
ð_
£ð<�€Èéþ¿ƒ¿Àÿ?ðì$
ðcŸ¨ 55 and 35¡*
( "ª
ðÓ
ð^
£ð<�€ÜØþ¿ƒ¿Àÿ?ðù$ì
ð_Ÿ¨2000 ¡*("ª ðÐ
ð]
£ð<�€tÉþ¿ƒ¿Àÿ?ðV+´$
ð\Ÿ¨40¡*("ª ð×
ð\
£ð<�€P¹þ¿ƒ¿Àÿ?ð&+V$
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ð[
£ð<�€¨þ¿ƒ¿Àÿ?ðA+&$
ð\Ÿ¨37¡*("ª ð×
ðZ
£ð<�€ü–þ¿ƒ¿Àÿ?ð +A$
ðcŸ¨ 53 and 35¡*
( "ª
ðÐ
ðY
£ð<�€†þ¿ƒ¿Àÿ?ð+ $
ð\Ÿ¨37¡*("ª ð×
ðX
£ð<�€øtþ¿ƒ¿Àÿ?ðì+$
ðcŸ¨ 55 and 35¡*
( "ª
ðÓ
ðW
£ð<�€dþ¿ƒ¿Àÿ?ðù+ì$
ð_Ÿ¨1999 ¡*("ª ðÐ
ðV
£ð<�€PTþ¿ƒ¿Àÿ?ðV~´+
ð\Ÿ¨40¡*("ª ð×
ðU
£ð<�€,Dþ¿ƒ¿Àÿ?ð&~V+
ðcŸ¨ 57 and 35¡*
( "ª
ðÐ
ðT
£ð<�€3þ¿ƒ¿Àÿ?ðA~&+
ð\Ÿ¨36¡*("ª ð×
ðS
£ð<�€à!þ¿ƒ¿Àÿ?ð ~A+
ðcŸ¨ 53 and 35¡*
( "ª
ðÐ
ðR
£ð<�€Ðþ¿ƒ¿Àÿ?ð~ +
ð\Ÿ¨36¡*("ª ð×
ðQ
£ð<�€þ¿ƒ¿Àÿ?ðì~+
ðcŸ¨ 54 and 35¡*
( "ª
ðÑ
ðP
£ð<�€Xîû¿ƒ¿Àÿ?ðù~ì+
ð]Ÿ¨1998 ¡( "ª ð
ðO
óðZ€<Üû‚ƒ„‡¿ƒ¿Àÿ?ðVZ´~
ð|Ÿ 0Self Employed Seniority¡ "ª ðD
ðN
óðZ€Ëû‚ƒ„‡¿ƒ¿Àÿ?ð&ZV~
𲟨Self-employed
Age & Seniority¡L 1
ÿ
"""ª$
ð=
ðM
óðZ€¸¹û‚ƒ„‡¿ƒ¿Àÿ?ðAZ&~
𫟨Public Sector
Seniority¡L
1
ÿ
""
"ª$
ðD
ðL
óðZ€X¨û‚ƒ„‡¿ƒ¿Àÿ?ð ZA~
𲟨Public Sector
Age & Seniority¡L 1
ÿ
"""ª$
ð¢
ðK
óðZ€ä–û‚ƒ„‡¿ƒ¿Àÿ?ðZ ~ðPˆHŠ@º___PPT9‹"¬€ÿÿ
𸟨Private Sector
Seniority¡X
1
ÿ"" "ª$
ð
ðJ
óðZ€X…û‚ƒ„‡¿ƒ¿Àÿ?ðìZ~ðRˆJŠBº___PPT9‹$¬€ÿÿ
ðÁŸ¨Private Sector
Age & Seniority¡Z ³
" ÿ"""ª$ ðý
ðI
óðZ€Dwû‚ƒ„‡¿ƒ¿Àÿ?ðùZì~
ðkŸ¨Year ¡6 ""ª ð`B
ð
ƒð0¿À€Ë8c×ÿ
?¿ðùZ´Zð`B
ð‚
ƒð0¿À€Ë8c×ÿ
?¿ðù
´
ðTB
ðƒ
cð$¿×ÿ
?¿ðùZù
ðTB
ð„
cð$¿×ÿ
?¿ð´Z´
ð`B
ð‡
ƒð0¿À€Ëœ1×ÿ
?¿ðù~´~ðTB
ð‰
cð$¿×ÿ
?¿ðìZì
ðTB
ðŒ
cð$¿×ÿ
?¿ðZ
ðTB
ð
cð$¿×ÿ
?¿ð Z
ðTB
ð’
cð$¿×ÿ
?¿ðAZA
ðTB
ð•
cð$¿×ÿ
?¿ð&Z&
ðTB
ð˜
cð$¿×ÿ
?¿ðVZV
ðTB
ðœ
cð$¿×ÿ
?¿ðù+´+ðTB
ð½
cð$¿×ÿ
?¿ðù$´$ðTB
ðÞ
cð$¿×ÿ
?¿ðù´ðTB
ðÿ
cð$¿×ÿ
?¿ðùg ´g ðTB
ð
cð$¿×ÿ
?¿ðù¡
´¡
ðTB
ðA
cð$¿×ÿ
?¿ðùÙ´ÙðH
ðƒð0ƒ“ŽŸ‹”Þ½h¿ÿ ?ð ÿÿÿ€€€Ì™33ÌÌÌÿ²²²ˆ‘Љº___PPT10‹ië.BÃÅ¢]+Dñ='ñ 'ÿÿÿÿ=ñ
@Bñ +rF$G\¬õ)™"$"è‹Å1è.ˆé(€àm°
_A F
òÌžÍÃn–ºEquation ºEquation.DSMT40º*MathType 5.0 Equation̨ÍÚ–ºGrafico ºMSGraph.Chart.80º4Grafico di Microsoft GraphÌžÍì!–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃ}-–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍî8–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍÃK–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍæL–ºEquation ºEquation.DSMT40º*MathType 5.0 EquationÌžÍéM–ºEquation ºEquation.DSMT40º*MathType 5.0 Equationò`/È0ÒÕ˜·DTimes New RomanT©T©¬r’Ü–É0Ü–Õ·DArialNew RomanT©T©¬r’Ü–É0Ü–Õ"¤€@ÿÿ¥.©
@£nÿý?" dd@ÿÿïÿÿÿÿÿÿ @@``€€¤ðœð@‘
S
‹!¢
%
-
/3476:;>š@BCEF‰KMNP$QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ†ÿð”2ð$ùª•aŸ¨e§7 ;Ú'¿ÿ2ð$’eªò'— ¤¼KCÚcÿ02ð$Ð(†€3jC9ßÌóìX´‚ÿkN2ð$ã‰ã6˶»<«"C°³Xÿò¹%bð$ñ½ìo‚ˆ|Ý[7,9<çÿÜ«6bð$J‰3’…†¾çD!5ƒÿȇC2ð$Êê>HÎ J‰ÆoÍë…ÿá0"ð$$×oyòu)H´ÛÍÍÿF~<2ð$šó›žÂe¢Áz,¶þk.ÿúÄH2ð$ WÌìוùdâž«
ÞûIÿv¾L2ð$µÃK
l\7"Iþ“ÔqÿÞ4P2ð$x‰–(öoþ¾°Qȧ+àÿêT2ð$¸¿ÚkkçSxÖ9€»ÿÆüVð$ÿ2ð$©RØýè™Fö ˜ËgÍm¬ÿxÂZƒð0ƒ†A¿ÀÅAÿ@ñÿ3f™ÿÿ™@ñ÷ðó€ÐìÿâžïÊš;Nh8Êš;úgþý4EdEd\›’ô–É0Ìýÿÿ¦ÿÿÿpûppû@<�ý4dddd —‘w0T©ˆr’<�ý4BdBd —‘w0T©ˆr’H<�ý4!d!d —‘w0T©ˆr’ˆiŠaº___PPT10‹A
pµpµä. ºCasaå.±6?ÙÚ
%OÙÚ
=ðsóI,Ÿ¨7How Large is the Retirement Consumption Drop in Italy?¡88(Ÿ¨>Erich Battistin
Agar Brugiavini
Enrico Rettore
Guglielmo Weber¡?P?ª4 0óŸ¨
Motivation¡Ÿ¨É
According to the life-cycle permanent income Hp consumers decide how much to consume, keeping in mind their future prospects
They form intertemporal plans aimed at smoothing the (discounted) marginal utility of consumption over the life cycle
Any period to period change in the actual level of the marginal utility of consumption is uncorrelated with past information available to the household. That is, it should be a result of unpredictable shocks.
¡TÇÿ3þÿ3þ•óZ5Ÿ¨
Motivation¡Ÿ¨¼
This holds true also around retirement age: any change in the marginal utility of consumption should be uncorrelated with planned retirement behaviour.
Recent micro evidence has emphasized that there is a one-off drop in consumption at the time of retirement that might be hard to reconcile with life-time optimizing behaviour (see for example Banks et al., 1998, Bernheim et al., 2001).
This is known as the retirement consumption puzzle
¡„º{ÿ3þÆÿ3þª>Ž § &Hó[6Ÿ¨
Motivation¡Ÿ JSome possible reasons mentioned in the literature:
changes in preferences due to increased leisure
shocks inducing retirement and affecting the level of consumption
reduction in work-related expenditures (transport, meals out, clothing)
increase in home production of services and/or more efficient purchases
unexpectedly low pensions or liquidity problems (not in Italy, though think of severance pay - liquidazione!)
¡N3s~ÿ3þª–ó>!Ÿ¨What Others Have Done¡Ÿ àBanks, Blundell and Tanner (1998) use repeated cross section data from the FES they estimate log-linear Euler equations from cohort data by IV (using lagged interest rates, consumption and income growth as instruments) and find unexplained negative residuals around typical male retirement ages (60-67).
The largest residual obtains at age 63 (1.5%). Altogether, cumulated residual are in the 8-10% region.
Non-separabilities between leisure and consumption can explain only part of the drop.
¡>ïPP&ÿ3þµª2
Dó?"Ÿ¨What Others Have Done¡Ÿ ÈBernheim, Skinner and Weinberg (2001) use panel data from the PSID to estimate Euler equations. Retirement status is instrumented by taking age-specific predicted probabilities conditional on demographics (however cannot explain spikes at ages 62 and 65).
Median drop is 14%, but higher for low wealth
Sample is split in groups: low wealth-to-income households drop their consumption most.
31% of households reduce their consumption by at least 35 percentage points at retirement .¡HåZ*
ÿ3þäÿ3þ·ªÝóY4Ÿ¨What Others Have Done¡Ÿ¨‚Possible explanations and related literature:
Many workers are surprised by inadequate resources when they retire (not consistent with life-cycle model & rational expectations).
Work related expenses.
Home production and/or more efficient shopping (Aguiar and Hurst, 2005, Hurd and Rohwedder, 2006).
Miniaci et al (2003) estimate by OLS the Italian retirement consumption drop at 5.4%.
¡0.ZUZ,WªPù PóŸ¨
What We Do¡Ÿ¨ºAn alternative identification strategy: we estimate the change in consumption at retirement by exploiting the exogenous variability in the retirement decision induced by the eligibility rules of the Italian pension system.
Information on consumption expenditures, eligibility for retirement and retirement status is obtained from the Bank of Italy Survey on Household Income and Wealth (SHIW). No need of panel data to achieve identification.¡J»Z&ÿ3þˆÿ3þË/™þóŸ¨
Punch-line¡Ÿ Key result: household non-durable consumption drops by 9.8% because of male retirement. A larger drop estimated for total food (14.1%).
Our strategy provides non-parametric identification only for a subpopulation of those who retire (those who retire at the time they become eligible).
We estimate smaller drops for poverty sample .
Our estimates can be reconciled with utility optimization - in the cross section, drop in work-related expenses and leisure substitutes is large enough to explain changes in consumption. ¡ZZ
ÿ3þÿ3þ9ÿ3þ…óŸ¨The Causal Problem¡Ÿ ÚLet S* be a variable denoting time to/from eligibility for retirement, negative values indicate that the subject is not yet eligible.
Let R be the ret‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿirement status, R=1 for the retired and R=0 otherwise. Since retirement is an option available only to the eligible workers, the probability to retire is zero if S*<�0 (and it is thus discontinuous at S*=0 ).
Let (Y1,Y0) be the two potential household consumption expenditures corresponding to the head being retired or not retired, respectively, and let ²=Y1-Y0 .
Let Y = Y0+R² be observed consumption, where Ya"Y1 for households whose head is retired and Ya"Y0 otherwise.¡ânÿ3þÿ3þÿ3þEÿ3þÿ3þÿ3þx
%
ÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þ ÿ3þ"O&ÿ3þÿ3þÿ3þçÿÿ3þÿ3þçÿÿ3þçÿÿ3þÿ3þçÿÿ3þ&ÿ3þ"&ÿ3þ.ÿ3þçÿ&"""&ÿ3þ.ÿ3þçÿ"óJ+Ÿ¨Identification in a nutshell¡Ÿ ,Start by comparing expenditures for households marginally close to S*=0; since Y = Y0+R² we have that
Consider the difference around eligibility:
¡f,/ÿ3þÿ3þÿ3þÿ3þÿ3þçÿÿ3þ&ÿ3þ
ÿ3þ,"ªBTó Ÿ¨Identification in a nutshell¡Ÿ ŽKey identifying restriction (the mean consumption profile under the no-retirement alternative is smooth enough at zero):
The result rests upon a weak regularity condition: if none of the heads were to retire no discontinuity in household consumption would take place at the time they become eligible (i.e. at S*=0) see Hahn et al. (2001) and Battistin and Rettore (2006).
This amounts to assuming that any idiosyncratic shocks relevant to the retirement choice and correlated with Y0 (e.g. health shocks) do not occur selectively at either side of the eligibility threshold.
¡–H`ÿ3þŒ
˜
çÿ_ª,[ ØóŸ¨Identification in a nutshell¡Ÿ¨¹By using simple algebra we have:
Estimators of the causal effect of retirement on consumption are analogue estimators obtained by replacing the quantities in the last expression by their empirical counterparts.
Following Imbens and Angrist (1994) and Hanh et al. (2001), it can be shown that this expression coincides with the IV estimator obtained by instrumenting the endogenous variable R with the eligibility status defined from S*.
¡–%Z”ZZ!A‹¬
ª>á·ó\7Ÿ¨Endogeneity of S*¡*ª.Ÿ ÌThe S* variable may be the outcome of individual choices (time to enter the labour market, temporary exits, etc). This might casts doubts that our identification strategy is marred by an endogeneity problem.
Consider the regression we use to get the numerator of the IV estimate (the reduced form):
Y= ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) +µ
The mean of Y conditional on S* is:
E{Y|S*} = ´0 + ´1 S* + ´2 S*2 + ´3 1(S*>0) + E{µ|S*}
where the last term does not vanish if S* is endogenous. ¡ +Z'Z%Z5Z;Z
%ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ"*"ÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þçÿÿ3þÿ3þÿ3þ&ÿ3þ.ÿ3þ ÿ3þ$"$$&$ÿ3þ$"$$*$$"$(( ªjLie
ó]8Ÿ¨Endogeneity of S*¡ ª.Ÿ ¬Nonetheless, the numerator of the IV estimand:
E{Y|S* =0+}-E{Y|S* =0-}
is not biased for ´3, the drop in consumption at the eligibility cut-off point, provided that:
E{µ|S*=0+}=E{µ|S*=0-}.
Our identifying restriction is that the dependence between the unobservables µ and S* is not discontinuously changing at the cut-off for eligibility.
¡‚/ZZ`ZZ–ZZZZ4"*"*"*"*"""&ÿ3þ.ÿ3þçÿ&ÿ3þJ"ÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þ&ÿ3þ.ÿ3þ&ÿ3þ.ÿ3þÿ3þM"*"&ÿ3þ8" " $$ªº B
ó^9Ÿ¨Data¡ó‹>Ÿ¨The Reform Process¡ª@Ÿ¨Two major reforms in 1992 (Amato) and 1995 (Dini)
Gradually moving from defined benefit to (notionally) defined contribution
Lots of additional minor changes have been made nearly every year since 1992
Further changes will take place in 2008 (restrictions on early retirement)ªR)
x
óG)óC%Ÿ¨The measurement of eligibility¡óD&Ÿ¨The measurement of eligibility¡ó$Ÿª
óH*óŸ¨ Retirement by Eligibility Status¡!!ó
Ÿ¨Measurement Error¡Ÿ¨OWe observe a non-negligible fraction of retired individuals amongst the ineligibles (this regardless of having imputed the eligibility variable for some individuals): this we take as evidence of measurement error in the data.
Measurement error bias in the estimation of causal parameters can be severe (see, for example, Battistin and Chesher, 2004).
Misclassification of the retirement status R is unlikely to be important, as retired individuals are asked a detailed set of questions on their pension.
Measurement error in the eligibility variable S* is most likely to be the explanation.
¡hPö›
(ªOúóŸ¨Measurement Error¡Ÿ¨ºBased on what we observe in the data, measurement error in S* can not be classical. If S=S*+u, with u a zero-mean error orthogonal to S* we would not observe any discontinuity in the proportion of retired individual s at the cut-off point.
A type of measurement error consistent with the discontinuity in the raw probability of R=1 we observe in the data is:
where Z is an indicator for having S= S* and U is a classical measurement error.¡JiPRP<�
+
ZY % # ó&Ÿ¨Measurement Error¡Ÿ¨Parameter of interest
¡BZÿ3þÿ3þóP-Ÿ¨
Estimation¡óƒ:Ÿ¨lA key feature of the Italian pension system is that many individuals retire as soon as they become eligible¡mmªl Ÿªó:Ÿ fFirst StageE{R|S} = ±0 + ±1 S + ±2 S2 + ±3 1(S>0) ¡Ö4ÿ3þ
"*çÿ"*çÿ"*çÿ"*"*çÿª¨ ó;Ÿ hReduced FormE{Y|S} = ´0 + ´1 S + ´2 S2 + ´3 1(S>0) ¡Þ5ÿ3þ
"
çÿ"
çÿ"
çÿ
"
çÿ ª° ó(Ÿ¨Estimation results¡óX3Ÿ¨Estimation results¡ó.Ÿ¨Specification tests¡Ÿ¨ŠIdentification strategy requires no change at S* = 0 in variables that affect consumption but are not affected by eligibility status.
We show that this condition is met by education, age, size of the main residence and proportion of couples
Exclusion restriction: family size. This is negatively affected by retirement induced by eligibility (-0.30). In particular, number of grown children cohabiting with their parents falls (-0.25).
Possible explanation: individuals retire as soon as they become eligible as a way to let their children move out (they give them part of their severance pay)
Hence actual consumption drop is even smaller than 9.8%!¡‹Z‹ó‡<Ÿ¨Economic Interpretation¡Ÿ In the US, consumption drop is largest among the low pre-retirement wealth (BSW).
We estimate a pre-eligibility wealth equation, and use it to predict for the whole sample (w_fit). We show this measure does not change at S*=0.
We select those households who w_fit is in the bottom third (w_poor). We call this poverty sample
We estimate small and insignificant effects of eligibility-induced retirement for this poverty sample
Our estimated consumption drop is unlikely to be due to lack of financial resources!¡bZÿ3þPÿ3þÿ3þܪ>PÜó…;Ÿ¨Back of the Envelope Stuff¡Ÿ¨…A causal effect of retirement on consumption expenditures is not surprising per se. The question is whether this is consistent with life-time optimizing behavior.
A consumption drop can occur if utility is not additively separable in consumption and leisure: since leisure increases abruptly at retirement, consumption increases or decreases depending on how leisure affects the marginal utility of consumption.
For instance, if utility is Cobb-Douglas in male leisure and non-durable consumption, and individuals work full time prior to retirement, our estimated 9.8% consumption drop implies an elasticity of intertemporal substitution of 0.84¡X†Z=y6…ó‰=Ÿ¨Work-Related Expenses¡Ÿ¨¢One good model is restrictive: Some goods are leisure substitutes (e.g. food out) or work-related (e.g. travel, clothing), other leisure complements (food in, home heating).
We explore which components of household expenditure drive the fall that we have documented.
We use data from the 2002 Survey of Family Budgets: this contains no information on eligibility, but detailed information on household expenditures.¡£Z£óR/Ÿ¨Work-Related Expenses¡Ÿ
We compare expenditures for households whose head s age is 50-54 and 65-69. Heads in the latter group are mostly retired, mostly employed in the former group.
The comparison is corrected for composition differences with respect to region of residence, number of equivalent adults and size of the main residence. Support issues turn out to be of no concern.
The overall drop is 15.6% : 50% larger than the estimated retirement consumption drop (9.8%). A third of the drop is due to age, two thirds to retirement.¡|<�/ÿ3þ=ÿ3þ@óQ.Ÿª
óS0Ÿ¨Work-Related Expenses¡Ÿ Total difference is - 241 euros (-15.6%). Mostly accounted for by meals out (-36), clothing (-58), transport (-76).
Overall 170 out of 241 drop is accounted for by work-related expenses . Our estimates imply that consumption should fall by 151 Euros because of eligibility-induced retirement.
Work-related expenses are less important for manual workers (canteen meals and overalls normally provided by the employer public transport is heavily subsidized). This may explain why there is no drop for the poverty sample!
óT1Ÿ¨Conclusions¡Ÿ¨IWe estimate that non-durable consumption falls by 9.8% in Italy because of retirement.
This drop is lower than in the US (14 %) but comparable to the UK (8%-10%, non-durable consumption).
Our estimates can be reconciled with utility optimization: in the cross section, drop in work-related expenses is large enough to explain it./ðDó`óaóbócódóeófógóhói ój
ókólóm
ónóoópóqórósótóuóvówóxóyózó{ó|ó}ó~óó€ ó!ó‚"ó„#ó†$óˆ%óŠ&êð?ñ€
0¿ð·pðxðOð( ð
ðxð
ðx
ÓðN€$zKX‚&¬ƒKX„&¬¿ƒ¿Àÿ ð–
ÕðÃ
z
ðrŸ *¡ùª¦ñ+++AAVVð
ðx
ÓðN€ˆ’zKX‚&¬ƒKX„&¬¿ƒ¿Àÿ ðÖ
lÕðÃz
ðtŸ *¡øª¦ñ+++AAVVðd
ðx
cð$‡¿ÿ ?ðAb‚ðÃzð[
ðx
ÓðN€Ü•zKX‚&¬ƒKX„&¬¿ƒ¿Àÿ ðíqüoðÃz
ðÅŸ¨uFare clic per modificare gli stili del testo dello schema
Secondo livello
Terzo livello
Quarto livello
Quinto livello¢:ªvð
ðx
ãðT€Ä›zKX‚&¬ƒKX„&¬‡¿ƒ¿Àÿ ðÚ–
¯ðà z
ðrŸ *¡úª¦ñ+++AAVVð
ðx
ãðT€˜šzKX‚&¬ƒKX„&¬‡¿ƒ¿Àÿ ðÚÖ
l¯ðÃz
ðtŸ *¡Øª¦ñ+++AAVVðH
ðxƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐ0¤FÉ0Àð¸pðäðPð( ð
ðäðü
ðä
ÓðN€È|"Xe‚¬²ƒXe„¬²¿ƒ¿Àÿ ð–
ÕðÃ
"
ðfŸ *¡ùª¦Àaaðþ
ðä
ÓðN€€"Xe‚¬²ƒXe„¬²¿ƒ¿Àÿ ðÖ
lÕðÃ"
ðhŸ *¡øª¦Àaað
ðä
ãðT€p’"Xe‚¬²ƒXe„¬²‡¿ƒ¿Àÿ ðÚ–
¯ðà "
ðfŸ *¡úª¦Àaað
ðä
ãðT€tœ"Xe‚¬²ƒXe„¬²‡¿ƒ¿Àÿ ðÚÖ
l¯ðÃ"
ðhŸ *¡Øª¦ÀaaðH
ðäƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.0•Æ@ît=ðñ,
0œð”€ð|ð,ð( ð
ð|ð^
ð| Sð¿ÿxðAb‚ðÃzðŽ
ð| cð$€`®z¿ÿxðíqüoðÃz
ð"ŸªðH
ð|ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇXFðñ
0œð”ð€ð,ð( ð
ð€ð^
ð€ Sð¿ÿxðAb‚ðÃXðŽ
ð€ cð$€ü¨X¿ÿxðíqüoðÃX
ð"ŸªðH
ð€ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ0ß®Fðñ5
0œð” ð„ð,ð( ð
ð„ð^
ð„ Sð¿ÿxðAb‚ðÃXðŽ
ð„ cð$€ä˜X¿ÿxðíqüoðÃX
ð"ŸªðH
ð„ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ0ß®Fðñ6
0œð”°ðˆð,ð( ð
ðˆð^
ðˆ Sð¿ÿxðAb‚ðÃXðŽ
ðˆ cð$€¸qX¿ÿxðíqüoðÃX
ð"ŸªðH
ðˆƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐe°Fðñ!
0œð”ÀðŒð,ð( ð
ðŒð^
ðŒ Sð¿ÿxðAb‚ðÃXðŽ
ðŒ cð$€”.¿ÿxðíqüoðÃX
ð"ŸªðH
ðŒƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇpì±Fðñ"
0œð”Ððð,ð( ð
ðð^
ð Sð¿ÿxðAb‚ðÃXðŽ
ð cð$€”´X¿ÿxðíqüoðÃX
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇs³Fðñ4
0œð”àð”ð,ð( ð
ð”ð^
ð” Sð¿ÿxðAb‚ðÃXðŽ
ð” cð$€\ºX¿ÿxðíqüoðÃX
ð"ŸªðH
ð”ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰù´Fðñ
0œð”ðð˜ð,ð( ð
ð˜ð^
ð˜ Sð¿ÿxðAb‚ðÃXðŽ
ð˜ cð$€¤ÀX¿ÿxðíqüoðÃX
ð"ŸªðH
ð˜ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰù´Fðñ
0œð”ðœð,ð( ð
ðœð^
ðœ Sð¿ÿxðAb‚ðÃXðŽ
ðœ cð$€tÆX¿ÿxðíqüoðÃX
ð"ŸªðH
ðœƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇP€¶Fðñ
0œð”ð ð,ð( ð
ð ð^
ð Sð¿ÿxðAb‚ðÃXðŽ
ð cð$€ØÎX¿ÿxðíqüoðÃX
ð"ŸªðH
ð ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇК¼Fðñ+
0œð” ð¤ð,ð( ð
ð¤ð^
ð¤ Sð¿ÿxðAb‚ðÃXðŽ
ð¤ cð$€ìÓX¿ÿxðíqüoðÃX
ð"ŸªðH
ð¤ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇPµÂFðñ
0œð”0ð¨ð,ð( ð
ð¨ð^
ð¨ Sð¿ÿxðAb‚ðÃXðŽ
ð¨ cð$€8ãX¿ÿxðíqüoðÃX
ð"ŸªðH
ð¨ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÂÅFðñ
0œð”@ð¬ð,ð( ð
ð¬ð^
ð¬ Sð¿ÿxðAb‚ðÃXðŽ
ð¬ cð$€éX¿ÿxðíqüoðÃX
ð"ŸªðH
ð¬ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÐÏÈFðñ7
0œð”Pð°ð,ð( ð
ð°ð^
ð° Sð¿ÿxðAb‚ðÃXðŽ
ð° cð$€ØîX¿ÿxðíqüoðÃX
ð"ŸªðH
ð°ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇpVÊFðñ8
0œð”`ð´ð,ð( ð
ð´ð^
ð´ Sð¿ÿxðAb‚ðÃXðŽ
ð´ cð$€¿z¿ÿxðíqüoðÃX
ð"ŸªðH
ð´ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÝËFðñ9
0œð”pð¸ð,ð( ð
ð¸ð^
ð¸ Sð¿ÿxðAb‚ðÃXðŽ
ð¸ cð$€HÈz¿ÿxðíqüoðÃz
ð"ŸªðH
ð¸ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÝËFðñ%
0œð”€ð¼ð,ð( ð
ð¼ð^
ð¼ Sð¿ÿxðAb‚ðÃXðŽ
ð¼ cð$€¤ôX¿ÿxðíqüoðÃX
ð"ŸªðH
ð¼ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ)
0œð”ðÀð,ð( ð
ðÀð^
ðÀ Sð¿ÿxðAb‚ðÃXðŽ
ðÀ cð$€túX¿ÿxðíqüoðÃX
ð"ŸªðH
ðÀƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ&
0œð” ðÄð,ð( ð
ðÄð^
ðÄ Sð¿ÿxðAb‚ðÃXðŽ
ðÄ cð$€"¿ÿxðíqüoðÃX
ð"ŸªðH
ðăð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǰcÍFðñ
0œð”°ðÈð,ð( ð
ðÈð^
ðÈ Sð¿ÿxðAb‚ðÃ"ðŽ
ðÈ cð$€Ü"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðȃð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vǘÐFðñ*
0œð”ÀðÌð,ð( ð
ðÌð^
ðÌ Sð¿ÿxðAb‚ðÃ"ðŽ
ðÌ cð$€¤"¿ÿxðíqüoðÃ"
ð"ŸªðH
ð̃ð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ@¥ÓFðñ
0œð”ÐðÐð,ð( ð
ðÐð^
ðÐ Sð¿ÿxðAb‚ðÃ"ðŽ
ðÐ cð$€ø"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðЃð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇà+ÕFðñ
0œð”àðÔð,ð( ð
ðÔð^
ðÔ Sð¿ÿxðAb‚ðÃ"ðŽ
ðÔ cð$€À"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðÔƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ€²ÖFðñ
0œð”ððØð,ð( ð
ðØð^
ðØ Sð¿ÿxðAb‚ðÃ"ðŽ
ðØ cð$€ˆ"¿ÿxðíqüoðÃ"
ð"ŸªðH
ð؃ð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ 9ØFðñ
0œð”ðÜð,ð( ð
ðÜð^
ðÜ Sð¿ÿxðAb‚ðÃ"ðŽ
ðÜ cð$€ô "¿ÿxðíqüoðÃ"
ð"ŸªðH
ð܃ð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ`FÛFðñ-
0œð”ðàð,ð( ð
ðàð^
ðà Sð¿ÿxðAb‚ðÃ"ðŽ
ðà cð$€Ä&"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðàƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ`FÛFðñ
0œð” ðäð,ð( ð
ðäð^
ðä Sð¿ÿxðAb‚ðÃ"ðŽ
ðä cð$€Œ,"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðäƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÍÜFðñ
0œð”0ðèð,ð( ð
ðèð^
ðè Sð¿ÿxðAb‚ðÃ"ðŽ
ðè cð$€ø0"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðèƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ SÞFðñ
0œð”@ðìð,ð( ð
ðìð^
ðì Sð¿ÿxðAb‚ðÃ"ðŽ
ðì cð$€À6"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðìƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ@ÚßFðñ3
0œð”Pððð,ð( ð
ððð^
ðð Sð¿ÿxðAb‚ðÃ"ðŽ
ðð cð$€<"¿ÿxðíqüoðÃ"
ð"ŸªðH
ððƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ€çâFðñ
0œð”`ðôð,ð( ð
ðôð^
ðô Sð¿ÿxðAb‚ðÃ"ðŽ
ðô cð$€A"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðôƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ/
0œð”pðøð,ð( ð
ðøð^
ðø Sð¿ÿxðAb‚ðÃ"ðŽ
ðø cð$€àF"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðøƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFðñ.
0œð”€ðüð,ð( ð
ðüð^
ðü Sð¿ÿxðAb‚ðÃ"ðŽ
ðü cð$€¨L"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðüƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ0
0œð”ðð,ð( ð
ðð^
ð Sð¿ÿxðAb‚ðÃ"ðŽ
ð cð$€xR"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ1
0œð” ðð,ð( ð
ðð^
ð Sð¿ÿxðAb‚ðÃ"ðŽ
ð cð$€@X"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇÀôåFðñ:
0œð”Àðð,ð( ð
ðð^
ð Sð¿ÿxðAb‚ðÃ"ðŽ
ð cð$€^"¿ÿxðíqüoðÃ"
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.ªvÇ@ø%äð(ñ;
0¨ð àðð8ð( ð
ððd
ð cð$¿ÿxˆðAb‚ðÃ"ð”
ð sð*€Ðc"¿ÿxˆðíqüoðÃ"
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFð(ñ<
0¨ð ðð8ð( ð
ððd
ð cð$¿ÿxˆðAb‚ðÃ"ð”
ð sð*€ i"¿ÿxˆðíqüoðÃ"
ð"ŸªðH
ðƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFð(ñ=
0¨ð ð$ð8ð( ð
ð$ðd
ð$ cð$¿ÿxˆðAb‚ðÃ"ð”
ð$ sð*€Hj"¿ÿxˆðíqüoðÃ"
ð"ŸªðH
ð$ƒð0ƒ“¼—”6”g¿ÿ ?ð ÿÿÿ€€€»àã33™™™™Ìˆ8Š0º___PPT10‹ë.§vÇ näFrÄ^èAÛw_@”p}7[ƒ£…LJ뉌3ŽW{’Ÿ”Ö瘛/SŸw¡›£¿¥ã§ª+¬O®s°—²»´ß¶¹'»K½o¿“Á·ÃÛÅ„ÿdž#ʈSÌŠƒÎõ™:è³Ð‹Å1Root Entryÿÿÿÿÿÿÿÿd›Oφꪹ)èPvŒ-wÇß PicturesÿÿÿÿÿÿÿÿúdCurrent Userÿÿÿÿÿÿÿÿÿÿÿÿ#SummaryInformation(ÿÿÿÿLìT‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×þÿÿÿÞýÿÿÿýÿÿÿýÿÿÿþÿÿÿþÿÿÿþÿÿÿàáâÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz|ÿÿÿÿ}~€‚ƒ„…†‹ýÿÿÿýÿÿÿýÿÿÿýÿÿÿŒ”ÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÿÿÿÿÿÿÿÿÿ•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍ{ÿÿÿÿÿÿÿÿÿÿÿÿÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüþýÿÿÿÿþÿÿÿ
!"#þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlayName°3M–•4g12åeo²‹ºN‡eàzŒTpptjjxb@sem.tsinghua.edu.cnChina Journal of EconomicsPowerPoint Document(ÿÿÿÿÿÿÿÿÿÿÿÿ/£ÑDocumentSummaryInformation8ÿÿÿÿÿÿÿÿŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿö_À‘ãÑôÚ0 þÿÕÍÕœ.“—+,ù®DÕÍÕœ.“—+,ù®Ü˜ˆ´ÀÈÐØ à
èðø
ýéýPresentazione su schermo£Ñd('æ-Times New RomanArialStruttura predefinitaMathType 5.0 EquationGrafico di Microsoft Graph8 How Large is the Retirement Consumption Drop in Italy?MotivationMotivationMotivationWhat Others Have DoneWhat Others Have DoneWhat Others Have DoneWhat We DoPunch-lineThe Causal ProblemIdentification in a nutshellIdentification in a nutshellIdentification in a nutshellEndogeneity of S*Endogeneity of S*DataThe Reform ProcessDiapositiva 18The measurement of eligibilityThe measurement of eligibilityDiapositiva 21Diapositiva 22!Retirement by Eligibility StatusMeasurement ErrorMeasurement ErrorMeasurement ErrorEstimationmA key feature of the Italian pension system is that many individuals retire as soon as they become eligible 8First Stage E{R|S} = α0 + α1 S + α2 S2 + α3 1(S>0) 9Reduced Form E{Y|S} = δ0 + δ1 S + δ2 S2 + δ3 1(S>0) Estimation resultsEstimation resultsSpecification testsEconomic InterpretationBack of the Envelope StuffWork-Related ExpensesWork-Related ExpensesDiapositiva 38Work-Related ExpensesConclusionsCaratteri utilizzatiModello strutturaServer OLE incorporatiTitoli diapositive(°@ô€ü4p_AdHocReviewCycleID_EmailSubject
_AuthorEmail_AuthorEmailDisp